

Welcome to TSNet’s documentation!

Contents:

	Introduction to TSNet
	Overview

	Features

	Version

	Contact

	Disclaimer

	Cite TSNet

	License

	Installation
	Setup Python Environment

	Stable Release (for users)

	From Sources (for developers)

	Dependencies

	Software Conventions and Limitations
	Units

	Modelling Assumptions and Limitations

	Getting Started
	Simple example

	Transient Modeling Framework
	Transient Model

	Initial Conditions

	Transient Simulation

	Simulation Results
	Results Structure

	Time Step and Time Stamps

	Results Retrieval

	Runtime and Progress

	Example Applications
	Example 1 - End-valve closure

	Example 2 - Pump operations

	Example 3 - Burst and leak

	Comparison with Hammer
	Tnet 0

	Tnet 3

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2019-08-15)

	0.1.1 (2019-09-21)

	0.1.2 (2020-01-20)

	0.2.0 (2020-4-23)

	0.2.1 (2020-09-09)

	0.2.2 (2020-09-24)

	0.2.3 (2021-11-12)

	0.2.4 (2022-06-17)

	0.3.0 (2023-02-22)

	API documentation
	Subpackages

	Module contents

	Abbreviations

	Reference

Indices and tables

	Index

	Module Index

	Search Page

Introduction to TSNet

TSNet performs transient simulation in water networks using Method of Characteristics (MOC).

	Free software: MIT license

	Github: https://github.com/glorialulu/TSNet.git

	Documentation: https://tsnet.readthedocs.io.

Overview

Hydraulic transients in water distribution networks (WDNs),
typically induced by pipe bursts, valve operations, and pump operations,
can disturb the steady-state flow conditions by introducing extreme pressure
variability and imposing abrupt internal pressure force
onto the pipeline systems [WOLB05].
These disturbances have been identified as one of the major contributing factors
in the many pipe deterioration and catastrophic failure in WDNs [RERS15],
thereby wasting a significant amount of treated water and creating unexpected
possibilities of contamination intrusion [ASCE17].
Consequently, transient simulation, as a prominent approach to
understand and predict the behavior of hydraulic transients,
has become an essential requirement for ensuring the distribution safety and
improving the efficiency in the process of design and operation of WDNs.
In addition to improving design and operation of WDNs,
various other transient-based applications, such as network calibration,
leak detection, sensor placement, and condition assessment,
has also enhanced the popularity and necessity of transient simulation

Acknowledgedly, a number of commercial software for transient simulation
in water distribution systems is available in the market;
however, the use of these software for research purposes is limited.
The major restriction is due to the fact that the programs are packed
as black boxes, and the source codes are not visible,
thus prohibiting any changes, including modification of
existing and implementation of new elements, in the source codes.
Additionally, the commercial software is designed to perform only
single transient simulations and do not have the capabilities to automate or
run multiple transient simulations.
Users are required to modify the boundary conditions using the GUI,
perform the simulation, and manually record the hydraulic responses
in the various conditions,
which significantly complicated the research process.

There is a clear gap that currently available simulation software
are not suitable for many research applications beyond the
conventional design purposes.
Hence, the motivation of this work is two-fold:

1. Provide users with open source and freely available python code
and package for simulating transients in water distribution systems
that can be integrated with other case specific applications,
e.g. sensor placement and event detection; and

2. Encourage users and developers to further develop and
extend the transient model.

Features

TSNet is a Python package designed to perform transient simulation in water
distribution networks. The software includes capability to:

	Create transient models based on EPANET INP files

	Operating valves and pumps

	Add disruptive events including pipe bursts and leakages

	Choose between steady,quasi-steady, and unsteady friction models

	Perform transient simulation using Method of characteristics (MOC) techniques

	Visualize results

For more information, go to https://tsnet.readthedocs.io.

Version

TSNet is a ongoing research project in the University of Texas at Austin.
The current version is 0.2.2, which is still a pre-release.

Contact

	Lu Xing, the University of Texas at Austin, xinglu@utexas.edu

	Lina Sela, the University of Texas at Austin, linasela@utexas.edu

Disclaimer

No warranty, expressed or implied, is made as to the correctness of the
results or the suitability of the application.

Cite TSNet

To cite TSNet, use one of the following references:

Xing, Lu, and Lina Sela. “Transient simulations in water distribution networks:
TSNet python package.” Advances in Engineering Software 149 (2020): 102884.

License

TSNet is released under the MIT license. See the LICENSE.txt file.

Installation

Setup Python Environment

TSNet is tested against Python versions 3.5, 3.6, and 3.7.
It can be installed on Windows, Linux, and Mac OS X operating systems.
Python distributions, such as Anaconda, are recommended to manage the Python
environment as they already contain (or easily support installation of) many
Python packages (e.g. SciPy, NumPy, pandas, pip, matplotlib, etc.) that are
used in the TSNet package. For more information on Python package
dependencies, see Dependencies.

Stable Release (for users)

To install TSNet, run this command in your terminal:

$ pip install tsnet

This is the preferred method to install tsnet, as it will always install the
most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From Sources (for developers)

The sources for TSNet can be downloaded from the Github repo [https://github.com/glorialulu/tsnet].

You can either clone the public repository:

$ git clone git://github.com/glorialulu/tsnet

Or download the tarball [https://github.com/glorialulu/tsnet/tarball/master]:

$ curl -OL https://github.com/glorialulu/tsnet/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Dependencies

Requirements for TSNet include Python (3.5, 3.6, or 3.7) along with
several Python packages.
The following Python packages are required:

	Numpy [VaCV11]: the fundamental package needed for scientific computing with Python
included in Anaconda distribution
http://www.numpy.org/

	Matplotlib [Hunt07]: Python 2D plotting library
included in Anaconda distribution
http://matplotlib.org/

	NetworkX [HaSS08]: Network creation and manipulation engine,
install on a python-enabled command line with pip install wntr
https://networkx.github.io/

	WNTR [WNTRSi]: Water Network Tool for Resilience
install on a python-enabled command line with pip install wntr
http://wntr.readthedocs.io

	pytest: Unit Tests engine
install on a python-enabled command line with pip install -U pytest
https://docs.pytest.org/en/latest/

Software Conventions and Limitations

Units

All data in TSNet is stored in the following International System (SI) units:

	Length = \(m\)

	Diameter = \(m\)

	Water pressure = \(m\)
(this assumes a fluid density of 1000 \(kg/m^3\))

	Elevation = \(m\)

	Mass = \(kg\)

	Time = \(s\)

	Demand = \(m^3/s\)

	Velocity = \(m/s\)

	Acceleration = \(g\) (1 \(g\) = 9.8 \(m/s^2\))

	Volume = \(m^3\)

If the unit system specified in .inp file is US units,
it will be converted to SI unit in the simulation process.
When setting up analysis in TSNet, all input values
should be specified in SI units.
All simulation results are also stored in SI units.

Modelling Assumptions and Limitations

TSNet is constantly under development. Current software limitations are
as follows:

	Demands on the start and end nodes of pumps and valves are not supported.
If demands are defined on these nodes in the .inp file, they will be
ignored in transient simulation, and the simulation results may
not be accurate due to discrepancies between the initial conditions
and the first step in transient simulation. Warnings will be printed.

	Multi-branch junctions on the start and end nodes of pumps and valves
are not supported. It is assumed that valves and pumps are connected
by pipes in series.

	During transient simulation, demands are pressure dependent .

	Pipe Friction coefficients are converted to Darcy-Weisbach coefficients
based on initial conditions.

	Pipe bursts and leaks occur only on the nodes.

	Transient simulation relies on a feasible steady state solution;
hence, it is essential to verify that the steady state simulation
succeeds without errors.

Getting Started

To use tsnet in a project, open a Python console and import the package:

import tsnet

Simple example

A simple example, Tnet1_valve_closure.py is included in the examples folder.
This example demonstrates how to:

	Import tsnet

	Generate a transient model

	Set wave speed

	Set time step and simulation period

	Perform initial condition calculation

	Define valve closure rule

	Run transient simulation and save results to .obj file

	Plot simulation results

Open an example network and create a transient model
tm = tsnet.network.TransientModel('/Users/luxing/Code/TSNet/examples/networks/Tnet1.inp')

Set wavespeed
tm.set_wavespeed(1200.) # m/s

Set time options
tf = 20 # simulation period [s]
tm.set_time(tf)

Set valve closure
ts = 5 # valve closure start time [s]
tc = 1 # valve closure period [s]
se = 0 # end open percentage [s]
m = 2 # closure constant [dimensionless]
tm.valve_closure('VALVE',[tc,ts,se,m])

Initialize steady state simulation
t0=0
tm = tsnet.simulation.Initializer(tm,t0)

Transient simulation
tm = tsnet.simulation.MOCSimulator(tm)

report results
node = ['N2','N3']
tm.plot_node_head(node)

Three additional EPANET INP files and example files are also included
in the TSNet examples repository in the examples folder.
Example networks range from a simple 8-node network to a 126-node network.

Transient Modeling Framework

The framework of performing transient simulation using TSNet is shown in Figure 1
The main steps of transient modelling and simulation in TSNet
are described in subsequent sections.

[image: flowchart]

Figure 1 Flowchart of transient simulation in TSNet

Transient Model

The transient model inherits the
WNTR water network model [WNTRSi],
which includes
junctions, tanks, reservoirs, pipes, pumps, valves,
patterns,
curves,
controls,
sources,
simulation options,
and node coordinates.
It can be built directly from an EPANet INP file.
Sections of EPANet INP file that are not compatible with WNTR are
described in [WNTRSi].

Compared with WNTR water network model,
TSNet transient model adds the features
designed specifically for transient simulation, such as
spatial discretization,
temporal discretization,
valve operation rules,
pump operation rules,
burst opening rules,
surge tanks, and
storage of time history results.
For more information on the water network model, see
TransientModel in the API documentation.

A transient model can be created directly from an EPANET INP file.
The following example build a transient model.

inp_file = 'examples/networks/Tnet1.inp'
tm = tsnet.network.TransientModel(inp_file)

Initial Conditions

TSNet employed WNTR [WNTRSi] for simulating the steady state
in the network to establish the initial conditions for
the upcoming transient simulations.

WNTRSimulators can be used to run demand-driven (DD) or
pressure-dependent demand (PDD) hydraulics simulations, with the
capacity of simulating leaks. The default simulation engine is DD.
An initial condition simulation can be run using the following code:

t0 = 0. # initialize the simulation at 0 [s]
engine = 'DD' # demand driven simulator
tm = tsnet.simulation.Initializer(tm, t0, engine)

\(t_0\) stands for the time when the initial condition will be
calculated. More information on the initializer can be found in
the API documentation, under
Initializer.

Transient Simulation

After the initial conditions are obtained, TSNet adopts
the Method of Characteristics (MOC)
for solving governing transient flow equations.
A transient simulation can be run using the following code:

results_obj = 'Tnet1' # name of the object for saving simulation results
tm = tsnet.simulation.MOCSimulator(tm, results_obj)

The results will be returned to the transient model (tm) object,
and then stored in the ‘Tnet1.obj’ file for the easiness of retrieval.

In the following sections, an overview of the solution approaches
and boundary conditions is presented,
based on the following literature [LAJW99] , [MISI08], [WYSS93].

Governing Equations

Mass and Momentum Conservation

The transient flow is governed by the mass and momentum conservation
equation [WYSS93]:

\[\begin{align}\begin{aligned}\frac{\partial H}{\partial t} + \frac{a^2}{g} \frac{\partial V}{\partial x} - gV\sin \alpha = 0\\\frac{1}{g}\frac{\partial V}{\partial t} + \frac{\partial H}{\partial x} + h_f = 0\end{aligned}\end{align} \]

where
\(H\) is the head,
\(V\) is the flow velocity in the pipe,
\(t\) is time,
\(a\) is the wave speed,
\(g\) is the gravity acceleration,
\(\alpha\) is the pipe slope,
and \(h_f\) represents the head loss per unit length due to friction.

Method of Characteristics (MOC)

The Method of Characteristics (MOC) method is used to solve the system of
governing equations above. The essence of MOC is to transform the set of
partial differential equations to an equivalent set of ordinary differential
equations that apply along specific lines, i.e., characteristics lines
(C+ and C-), as shown below [LAJW99]:

\[\begin{align}\begin{aligned}C+: \ \ \ \frac{dV}{dt} + \frac{g}{a} \frac{dH}{dt} + g h_f - \frac{g}{a}V\sin\alpha = 0
\ \ \ \text{ along } \frac{dx}{dt} = a\\ C-: \ \ \ \frac{dV}{dt} - \frac{g}{a} \frac{dH}{dt} + g h_f - \frac{g}{a}V\sin\alpha = 0
\ \ \ \text{ along } \frac{dx}{dt} = -a\end{aligned}\end{align} \]

Headloss in Pipes

Steady/ quasi-steady friction model

TSNet adopts Darcy-Weisbach equation to compute head loss, regardless of the
friction method defined in the EPANET .inp file. This package computes
Darcy-Weisbach coefficients (\(f\)) based on the head loss per unit length
(\({h_f}_0\)) and flow velocity (\(V_0\)) in initial condition,
using the following equation:

\[f = \frac{{h_f}_0}{V_0^2/2gD}\]

where
\(D\) is the pipe diameter,
and \(g\) is gravity acceleration.

Subsequently, in transient simulation the headloss (\(h_f\)) is calculated
based on the following equation:

\[h_f = f\frac{V^2}{2gD}\]

Unsteady friction model

In addition to the steady friction model, TSNet includes the quasi-steady and
the unsteady friction models.
The head loss term (\(h_f\)) can be expressed as a sum of steady/quasi-steady part
(\({h_f}_s\)) and unsteady part (\({h_f}_u\)), i.e., \(h_f={h_f}_s+ {h_f}_u\).
TSNet incorporates the instantaneous acceleration-based model [VIBS06] to calcualte the
unsteady friction:

\[{h_f}_u = \frac{k_u}{2g} \left(\frac{\partial V}{\partial t} + a \cdot \mbox{sign}(V) \left| \frac{\partial V}{\partial x}\right| \right)\]

where
\({h_f}_u\) is the head loss per unit length due to unsteady friction,
\(\frac{\partial V}{\partial t}\) is the local instantaneous acceleration,
\(\frac{\partial V}{\partial x}\) is the convective instantaneous acceleration, and
\(k_u\) is Brunone’s friction coefficient, which can be analytically determined using
Vardy’s sheer decay coefficient (\(C^*\)) [VABR95]:

\[k_u = \frac{C^*}{2}\]

\[\begin{split}C^* = \left\{ \begin{array}{rl}
 0.00476 & \mbox{laminar flow } (Re \leq 2000)\\
 \frac{7.41}{Re^{\log{(14.3/Re^{0.05})}}} & \mbox{turbulent flow } (Re > 2000)
\end{array} \right.\end{split}\]

TSNet allows the user to choose the friction model using TSNet API simply by specifying
the friction model to be used in MOCSimulator.
The friction argument can take three values: ‘steady’, ‘quasi-steady’, and ‘unsteady’:

results_obj = 'Tnet3' # name of the object for saving simulation results
friction = 'unsteady' # or "steady" or "quasi-steady", by default "steady"
tm = tsnet.simulation.MOCSimulator(tm, results_obj, friction)

Pressure-driven Demand

During the transient simulation in TSNet, the demands are treated as
pressure-dependent discharge; thus, the actual demands will vary from
the demands defined in the INP file.
The actual demands (\(d_{actual}\)) are modeled based on the
instantaneous pressure head at the node and the demand discharge coefficients,
using the following equation:

\[d_{actual} = k \sqrt{H_p}\]

where \(H_p\) is the pressure head
and \(k\) is the demand discharge coefficient,
which is calculated from the initial demand (\(d_0\))
and pressure head (\({H_p}_0\)):

\[k = \frac{d_0}{\sqrt{{H_p}_0}}\]

It should be noted that if the pressure head is negative,
the demand flow will be treated zero,
assuming that a backflow preventer is installed on each node.

Choice of Time Step

The determination of time step in MOC is not a trivial task. There are two
constraints that have to be satisfied simultaneously:

	The Courant’s criterion has to be satisfied for each pipe,
indicating the maximum time step allowed in the network transient analysis
will be:

\[\Delta t \leqslant \min{\left(\frac{L_i}{N_i a_i}\right)} \text{, }
i = 1 \text{, } 2 \text{, ..., } n_p\]

	The time step has to be the same for all the pipes in the network, therefore
restricting the wave travel time \(\frac{L_i}{N_ia_i}\) to be the same
for any computational unit in the network. Nevertheless, this is not
realistic in a real network, because different pipe lengths
and wave speeds usually cause different wave travel times. Moreover,
the number of sections in the \(i^{th}\) pipe (\(N_i\)) has to
be an integer due to the grid configuration in MOC; however, the
combination of time step and pipe length is likely to produce
non-integer value of \(N_i\), which then requires further adjustment.

This package adopted the wave speed adjustment scheme [WYSS93] to make
sure the two criterion stated above are satisfied.

To begin with, the maximum allowed time step (\({\Delta t}_{max}\)) is
calculated, assuming that there are two computational units
on the critical pipe (i.e., the pipe that results in the smallest travel time,
which depends on the length and the wave speed for that pipe):

\[\Delta t_{max} = \min{\left(\frac{L_i}{2a_i}\right)} \text{, }
i = 1 \text{, } 2 \text{, ..., } n_p\]

After setting the initial time step, the following adjustments will be performed.
Firstly,
the \(i^{th}\) pipes (\(p_i\)) with length (\(L_i\)) and wave
speed (\(a_i\)) will be discretized into (\(N_i\)) segments:

\[N_i = \text{round}\left(\frac{L_i}{a_i \Delta t_{max}}\right) \text{, }
 i = 1, 2, \dots, n_p\]

Furthermore, the discrepancies introduced by the rounding of \(N_i\)
can be compensated by correcting the wave speed (\(a_i\)).

\[\Delta t = \mbox{argmin}_{\phi,\Delta t}{\left \{\sum_{i=1}^{n_p}{{\phi_i}^2} \ \ \big | \ \ \Delta t = \frac{L_i}{a_i(1 \pm \phi_i)N_i} \ \ i = 1, 2, \dots, n_p \right\} }\]

Least squares approximation is then used to determine \(\Delta t\)
such that the sum of squares of the wave speed adjustments
(\(\sum{{\phi_i}^2}\)) is minimized [MISI08].
Ultimately, an adjusted
\(\Delta t\) can be determined and then used in the transient simulation.

It should be noted that even if the user defined time step satisfied the
Courant’s criterion, it will still be adjusted.

If the user defined time step is greater than \({\Delta t}_{max}\), a
fatal error will be raised and the program will be killed; if not, the
user defined value will be used as the initial guess for the upcoming
adjustment.

dt = 0.1 # time step [s], if not given, use the maximum allowed dt
tf = 60 # simulation period [s]
tm.set_time(tf,dt)

The determination of time step is not
straightforward, especially in large networks.
Thus, we allow the user
to ignore the time step setting, in which case
\({\Delta t}_{max}\) will be used as the initial guess for the upcoming adjustment.

Alternatively, the user can also specify the number of segments on the critical pipe:

N = 3 # number of computational units on the critical pipe, default 2.
tf = 60 # simulation period [s]
tm.set_time_N(tf,N)

Example

We use a small network, shown in Figure 2,
to illustrate how time step is determined
as well as the benefits and drawbacks of combining or removing small pipes.
Figure 2 (a) shows a network of three pipes with length of 940m, 60m, and 2000m, respectively.
The wave speed for all the pipes is equal to 1000m/s.
The procedure for determine the time step is as follows:

	Calculate the maximum time step (\(\Delta t_{max}\))
allowed by Courant’s criterion, assuming that there are two computational units
on the critical pipe (i.e., the pipe that results in the smallest travel time,
which depends on the length and the wave speed for that pipe), i.e., for pipe 2 \(N_2 = 2\).}

\[\Delta t_{max} = \min{\left(\frac{L_i}{2a_i}\right)} = \left(\frac{L_2}{N_2a_2}\right) = \frac{60}{2\times 1000} = 0.03s\]

	Compute the required number of computational units for all other
pipes, i.e, \(N_1\) for pipe 1 and \(N_3\) for pipe 3, using \(\Delta t_{max}\) as the time step.
Since the number of computational units on each pipe has to be integer,
the numbers are rounded to the closest integer, thus introducing discrepancies in the time step of different pipes.

\[\begin{align}\begin{aligned}N_1 &= \text{round}\left(\frac{L_1}{a_1 \Delta t_{max}}\right) = \frac{940}{1000\times0.03} = 31\\N_3 &= \text{round}\left(\frac{L_3}{a_3 \Delta t_{max}}\right) = \frac{2000}{1000\times0.03} = 67\end{aligned}\end{align} \]

With these number of computational units, the time steps for each pipe become:

\[\begin{align}\begin{aligned}\Delta t_1 = \frac{L_1}{N_1a_1}=0.03032s\\\Delta t_3 = \frac{L_3}{N_3a_3}=0.02985s\end{aligned}\end{align} \]

However, all the pipes have to have the same time step for marching forward;
hence, we need to adjust the wave speed to match the time step for all pipes.

\[\Delta t =\frac{L_i}{a_i^{adj}N_i}\]

	Compensate the discrepancies introduced by rounding number of
computation units through adjusting wave speed from \(a_i\) to \(a_i^{adj}=a_i(1+\phi_i)\).
The sum of squared adjustments (\(\sum{{\phi_i}^2}\)) is minimized to obtain the minimal overall
adjustment. In this example, the wave speeds of the three pipes are adjusted by
\(\phi_1 = 0.877\, \phi_2 = -0.196\%, \phi_3 =0.693\%\), respectively.

	Finally, the time step can be calculated based on the number of
computational units and the adjusted wave speed of each one of three pipes that now share
the same time step:

\[\Delta t = \frac{L_i}{a_i(1 \pm \phi_i)N_i}=0.03006s\]

[image: MOC_time]

Figure 2 Example network for determining the time step: (a) before combing pipes; (b): after combing pipes.

Noticeably, the maximum allowed time step for this network is fairly small.
Meanwhile, the total number of segments (\(31+2+67=100\)) is relatively large;
thus, in order to conduct a transient simulation of \(10s\),
the overall number of computation nodes in x-t plane will be \(10/0.03006\times100=33267\).
The computation efforts can be significantly reduced by, for example, combing/removing the shorted pipe, i.e., pipe 2.
Figure 2 (b) illustrates the network after combing pipe 1 and pipe 2.
Following the same steps shown above, it can be determined that the maximum time step is \(0.5s\), and
the number of computation units for pipes 1 and 2 are \(2\) and \(4\), respectively,
thus significantly reducing the total number of computation nodes in x-t plane required
for \(10s\) simulation to \(10/0.5\times(2+4)=26\).

In this example, we implicitly assumed that pipe properties were the same (e.g., diameter, material),
however these properties affect wave propagation, reflection, and damping.
Hence, despite the benefits in reducing computation costs,
merging or removing pipes to improve computational efficiency
is not straightforward and requires careful considerations of how these changes will affect modeling accuracy.
In other words, any discontinuity or change in pipe properties will create changes in wave propagation, and hence,
if removed will change the model.
For example, suppose pipe 1 and 3 in Figure 2 have the same diameter,
while pipe 2 has smaller diameter,
then a certain portion of wave speed will be reflected at junctions connecting the pipes.
However, if pipe 2 is to be removed, and pipe 1 is then connected to pipe 3, which exhibit the same diameter,
there will be no reflection observed in the new junction, thus altering the wave propagation in the network.
Therefore, precautions are required before removing or combing the short pipes,
or modifying network topology in general.

Moreover, the simulation time step can be controlled by specifying
large number of segments in the critical pipe, which will also control the
wave speed adjustments (\(\phi\)), as shown in Figure 3
calculated for network Tnet1.
The black curve shows the reduction in the simulation time step as the number of segments
in the critical pipe increases.
Subsequently, the decreased time step results in a reduction in wave speed adjustment
(\(a^{adj} = a\times(1+\phi)\)), as illustrated by the red curve.
The red line represents the average wave speed adjustment and the shaded area
represents the maximum and minimum wave speed adjustments for all pipes in the network.
For example, when the critical pipe is divided into 40 segments, the time step is reduced
to less than 0.001s, and
the adjustment of wave speed is reduced to about 0.005, which is negligibly small.
However, there is obviously a computational trade-off between numerical accuracy and
computational efficiency.

[image: wavev]

Figure 3 Time step (black, left y-axis) versus the number of computational
units on the critical pipe and the wave speed adjustments (red, right y-axis)
showing the mean (red line) and the max-min range (shaded area).

Numerical Scheme

The explicit MOC technique adopted to solve the compatibility equations
is explained in a simple network.
Figure 4 illustrates a simple piped network
and the corresponding MOC characteristic grid on the x-t plane.
Boundary nodes (represented by the void circles),
are defined by the physical elements in the network (or any discontinuity),
such as tanks, junctions, valves, pumps, leaks and bursts.
Inner nodes (represented by solid circles) are numerically specified to divide a single
pipe into several segments, i.e., computational units, so that the propagation of pressure waves
can be properly modeled.
The heads, \(H\), and flow velocities, \(V\), are computed for each computational node,
either boundary or inner node, and at each time based on the information at a previous time.
Depending on the type of the computational node (i.e. inner or boundary)
and the specific boundary condition,
the flows and heads may be allocated and computed differently.
Figure 5 shows a general example of two computational units for computing flow velocities and heads.
Note that for inner nodes, where there is no change in pipe or flow conditions,
\(H_2^t = H_3^t\) and \(V_2^t = V_3^t\).
Otherwise, additional head/flow boundary conditions will be introduced between points 2 and 3
in addition to the two compatibility equations.
Detailed descriptions about different boundary conditions are discussed in the next section.

[image: MOC_grid_net]

Figure 4 Topology of a simple network

[image: MOC_grid]

Figure 5 MOC characteristic grids in x-t plane for two adjacent computational units

Steady/quasi-steady Friction Model

The solution of the compatibility equations is achieved by integrating
the above equations along specific characteristic lines of the numerical grid,
which are solved to compute the head and flow velocity, \(H_i^t,V_i^t\),
at new point in time and space given that the conditions at the previous time step are known.
The two characteristic equations describing the hydraulic transients with steady friction model
(\(h_f = {h_f}_s = f\frac{V^2}{2gD}\)) are discretized and formulated as:

(1)\[\begin{split}C+: &\qquad {} (V_i^t - V_{i-1}^{t-1}) + \frac{g}{a} (H_i^{t} - H_{i-1}^{t-1})
 + \frac{f\Delta t}{2D}V_{i-1}^{t-1} |V_{i-1}^{t-1}|
 + \frac{g\Delta t}{a} V_{i-1}^{t-1}\sin\alpha= 0\\
C-: &\qquad {} (V_i^t - V_{i+1}^{t-1}) - \frac{g}{a} (H_i^{t} - H_{i+1}^{t-1})
 - \frac{f\Delta t}{2D}V_{i+1}^{t-1} |V_{i+1}^{t-1}|
 - \frac{g\Delta t}{a} V_{i+1}^{t-1}\sin\alpha= 0\end{split}\]

Once the MOC characteristic grid and numerical scheme are established,
the explicit time marching MOC scheme can be conducted in the computational units shown
in Figure 5 as follows:

	First, given initial conditions, the heads and flow velocities
at all computational nodes are known, and are updated for the next time step,
i.e. \(H_2^{t}, V_2^{t}, H_3^{t}\),
and \(V_3^{t}\) will be updated based on
\(H_1^{t-1}, V_1^{t-1}, H_4^{t-1},\) and \(V_4^{t-1}\).

	Then, the relation between \(H_2^t\) and \(V_2^t\) with known
\(H_1^{t-1}, V_1^{t-1}\), and properties of the computation unit 1,
such as wave speed (\(a_1\)) and friction factor(\(f_1\)) are established
along the positive characteristic line (\(C^+\)):

\[V_2^t + \frac{g}{a_1} H_2^t = V_1^{t-1} + \frac{g}{a_1} H_1^{t-1}
-\frac{f_1\Delta t}{2D_1}V_1^{t-1} |V_1^{t-1}| + \frac{g\Delta t}{a_1} V_1^{t-1}\sin\alpha_1\]

	Similarly, \(H_3^t\) and \(V_3^t\) is updated using the compatibility equations
along the negative characteristic line (\(C^-\)) and
conditions at previous time step, \(H_4^{t-1}, V_4^{t-1}\) :

\[V_3^t - \frac{g}{a_2} H_3^t = -V_4^{t-1} + \frac{g}{a_2} H_4^{t-1}
+ \frac{f_2\Delta t}{2D_2}V_4^{t-1} |V_4^{t-1}| - \frac{g \Delta t}{a_2} V4^{t-1}\sin\alpha_2\]

	Subsequently, the system of equations is supplemented using
the boundary conditions at the node connecting the two computation units,
such as energy equations that specify the relation between \(H_2^t\) and \(H_3^t\)
and continuity equations for \(V_2^t\) and \(V_3^t\).
Different boundary conditions can be defined to characterize different connections,
including valves, pumps, surge tanks, and pipe-to-pipe junctions with/or without
leak, burst, and demand.
For example, if the connection is a pipe-to-pipe junction with a leak, the boundary conditions
can be defined as:

\[H_2^t = H_3^t; V_2^t A_1 = V_3^t A_2 + k_l \sqrt{H_2^t}\]

where, \(k_l\) is the leakage coefficient and
\(A_1, A_2\) are the cross-sectional area of computation units 1 and 2, respectively.
More boundary conditions are discussed in the next section.

	Ultimately, the system of equations containing compatibility equations,
and the two boundary conditions
can be solved for the four unknowns, i.e.,:math:H_2^t, V_2^t, H_3^t, and \(V_3^t\),
thus completing the time marching from \(t-1\) to \(t\).

Unsteady Friction Model

The local (\(\frac{\partial{V}}{\partial{x}}\))
and convective instantaneous (\(\frac{\partial{V}}{\partial{t}}\))acceleration terms
are approximated using finite-difference schemes
on the characteristic grid, as shown in Figure 6.
The explicit fist-order finite difference scheme is implemented such that the computation
of the acceleration terms does not interact with adjacent computational sections,
thus preserving the original structure of the MOC scheme.
Mathematically, the acceleration terms along positive and negative characteristic lines can
be represented as:

\[\begin{split}C^+: & \frac{\partial{V}}{\partial{t}}^+ = \frac{V_1^{t-1}-V_1^{t-2}}{\Delta t}
 & \frac{\partial{V}}{\partial{x}}^+ = \frac{V_2^{t-1}-V_1^{t-1}}{\Delta x} \\
C^-: & \frac{\partial{V}}{\partial{t}}^- = \frac{V_4^{t-1}-V_4^{t-2}}{\Delta t}
 & \frac{\partial{V}}{\partial{x}}^- = \frac{V_4^{t-1}-V_3^{t-1}}{\Delta x}\end{split}\]

[image: MOC_grid_unsteady]

Figure 6 MOC characteristic grid with finite difference unsteady friction

Subsequently, the formulation of unsteady friction can be incorporated into
the compatibility equations with
additional terms describing the instantaneous acceleration-based unsteady friction model,
as below:

(2)\[\begin{split}C+: \qquad {}(V_i^t - V_{i-1}^{t-1}) + \frac{g}{a} (H_i^{t} - H_{i-1}^{t-1})
 + \frac{g}{a} \Delta t V_{i-1}^{t-1}\sin\alpha
 + \frac{f\Delta x}{2D}V_{i-1}^{t-1} |V_{i-1}^{t-1}|\\
 + \frac{k_u}{2g} \left[(V_{i-1}^{t-1} - V_{i-1}^{t-2}) +
 \mbox{sign}(V_{i-1}^{t-1}) \left|V_i^{t-1} - V_{i-1}^{t-1} \right| \right] = 0\\
C-: \qquad {} (V_i^t - V_{i+1}^{t-1}) - \frac{g}{a} (H_i^{t} - H_{i+1}^{t-1})
 + \frac{g}{a} \Delta t V_{i+1}^{t-1}\sin\alpha
 - \frac{f\Delta x}{2D}V_{i+1}^{t-1} |V_{i+1}^{t-1}|\\
 - \frac{k_u}{2g} \left[(V_{i+1}^{t-1} - V_{i+1}^{t-2}) +
 \mbox{sign}(V_{i+1}^{t-1}) \left|V_{i+1}^{t-1} - V_{i}^{t-1} \right| \right] = 0\end{split}\]

Boundary Conditions

Boundary conditions are required to characterize the devices or discontinuities,
such as such as tanks, junctions, valves, pumps, leaks and bursts, between two computational units.
Supplemented by the boundary conditions specifying the relations between \(H_2 ^t, H_3^t, V_2^t, V_3^t\) as
in Figure 5 or Figure 6,
the compatibility equations (Eq.1 or Eq.2)
can then be solved to obtain \(H_2 ^t, H_3^t, V_2^t\), and \(V_3^t\).
The following sections discuss the boundary conditions for devices and discontinuities in detail.

Surge tanks

The modeling of water hammer protection devices, including the open and closed surge tanks,
are also incorporated in TSNet.
An open surge tank is modeled as an open chamber connected directly to a pipeline
and is open to the atmosphere [WYSS93].
Initially, the water head (\(z\)) in the tank equals to the hydraulic head in the upstream pipeline.
During transient simulation, the open surge tank moderates pressure transients by
storing the excess water when a pressure jump occurs in the pipeline connection, or supplying water
in the event of a pressure drop.
Then, the boundary conditions at the open surge tank can be formulated as:

(3)\[\begin{align}\begin{aligned}&V_2^t A_1 - V_3^t A_2 = Q_T^t &\mbox{continuity}\\&H_2^t = H_3^t &\mbox{energy conservation}\\&H_2^t = z^t &\mbox{energy conservation}\\&z^t = z^{t-1} + \frac{\Delta t }{a A_T}\left(Q_T^t + Q_T^{t-1}\right) &\mbox{tank water level}\end{aligned}\end{align} \]

where \(Q_T\) is the flow rate into the surge tank,
\(z\) is the water level in the surge tank, and
\(A_T\) is the cross-sectional area of the surge tank.
With six equations (two compatity equations and four boundary conditions)
and six unknowns (\(V_2^t, V_3^t, H_2^t, H_3^t, z^t, Q_T^t\)),
the above system of equations can be solved at each time step.
Other devices can be modeled as well by defining the corresponding boundary conditions to
replace Eq.3.

In TSNet, an open surge tank is assumed to exhibit infinite height so that the tank never overflows.
The user can add an open surge tank to an existing network in the TSNet model by defining the desired
location and the cross-sectional area of the surge tank, as shown:

tank_node = 'JUNCTION-90'
tank_area = 10 # tank cross sectional area [m^2]
tm.add_surge_tank(tank_node, [tank_area], 'open')

Although the infinite height assumption is not realistic, due to the modeling simplicity,
open surge tanks can serve an good initial approach for investigating the placement of surge protection devices.
In fact, the major disadvantages of open surge tanks is that it typically cannot accommodate
large pressure transients unless the tank is excessively tall and large, which limits its usefulness.

Hence, we also included closed surge tank, i.e., air chamber,
in TSNet as more realistic water hammer protection devices.
An air chamber is a relatively small sealed vessel with compressed air at its top and
water in the bottom [WYSS93].
During transient simulation, the closed surge tank also moderates pressure transients
by slowing down the deceleration or the acceleration of water flow. For example, when pressure
in the upstream connection increases, water flows into the tank, water level in the tank increases,
air volume compresses, and air pressure increases,
thus slowing down the acceleration of the water inflow into the tank and the increase in pressure.
Similarly, when pressure in the upstream connection drops, water flows from the tank,
then water level in the chamber decreases, air volume increases, and air pressure decreases,
thus slowing the deceleration of the water flow and the decrease of pressure head.
The boundary conditions characterizing close surge tank in the computational units
shown in Figure 5 are formulated as:

\[\begin{align}\begin{aligned}& V_2^t A_1 - V_3^t A_2 = Q_T^t &\mbox{continuity}\\& H_2^t = H^3_t &\mbox{energy conservation}\\& H_A^t = H2^t + H_b - z_t &\mbox{energy conservation}\\& z^t = z^{t-1} + \frac{\Delta t }{a A_T}\left(Q_T^t + Q_T^{t-1}\right) &\mbox{tank water level}\\& H_A^t \mathcal{V}_A^t = \mbox{constant} &\mbox{perfect gas law}\\& \mathcal{V}_A^t = \mathcal{V}_A^{t-1} - A_T \left(z^t-z^{t-1}\right) &\mbox{tank air volume}\end{aligned}\end{align} \]

where \(Q_T\) is the flow rate into the surge tank,
\(z\) is the water level in the surge tank,
\(H_A, \mathcal{V}_A\) are the total head, and the volume of the air in the surge tank,
\(H_b\) is the barometric pressure, and
\(A_T\) is the cross-sectional area of the surge tank.

The user can add a closed surge tank by specifying the location, cross-sectional area,
total height of the surge tank, and initial water height in the tank:

tank_node = 'JUNCTION-90'
tank_area = 10 # tank cross sectional area [m^2]
tank_height = 10 # tank height [m]
water_height = 5 # initial water level [m]
tm.add_surge_tank(tank_node, [tank_area,tank_height,water_height], 'closed')

Valve Operations

Valve operations, including closure and opening, are supported in TSNet.
The default valve shape is gate valve, the valve characteristics curve
of which is defined according to [STWV96].
The following examples illustrate how to perform valve operations.

Valve closure can be simulated by defining
the valve closure start time (\(ts\)),
the operating duration (\(t_c\)),
the valve open percentage when the closure is completed (\(se\)),
and the closure constant (\(m\)), which characterizes
the shape of the closure curve.
These parameters essentially define the valve closure curve.
For example, the code below will yield the blue curve
shown in Figure 7.
If the closure constant (\(m\)) is
instead set to \(2\), the valve curve will then correspond to the
orange curve in Figure 7.

tc = 1 # valve closure period [s]
ts = 0 # valve closure start time [s]
se = 0.5 # end open ratio
m = 1 # closure constant [dimensionless]
valve_op = [tc,ts,se,m]
tm.valve_closure('VALVE',valve_op)

[image: valve_closure]

Figure 7 Valve closure operating rule

Furthermore, valve opening can be simulated by defining a similar set of
parameters related to the valve opening curve. The valve opening curves
with \(m=1\) and \(m=2\) are illustrated in Figure 8.

tc = 1 # valve opening period [s]
ts = 0 # valve opening start time [s]
se = 0.5 # end open ratio
m = 1 # opening constant [dimensionless]
valve_op = [tc,ts,se,m]
tm.valve_opening('VALVE',valve_op)

[image: valve_opening]

Figure 8 Valve opening operating rule

Pump Operations

The TSNet also includes the capability to perform controlled pump operations
by specifying how the pump rotation speed changes over time.
Explicitly, during pump start-up, the rotational speed of the pump
is increased based on the user defined operating rule.
The pump is then modeled using the two compatibility equations,
a continuity equation, the pump characteristic curve at given rotation speed,
and the affinity laws [LAJW99], thus resulting in
the rise of pump flowrate and the addition of mechanical energy.
Conversely, during pump shut-off, as the rotational speed of the pump
decreased according to the user defined operating rule,
the pump flowrate and the addition of mechanical energy decline.
However, pump shut-off due to power failure,
when the reduction of pump rotation speed
depends on the characteristics of the pump (such as the rotate moment of inertia),
has not been included yet.

The following example shows how to add pump shut-off event to the network,
where the parameters are defined in the same manner as in valve closure:

tc = 1 # pump closure period
ts = 0 # pump closure start time
se = 0 # end open percentage
m = 1 # closure constant
pump_op = [tc,ts,se,m]
tm.pump_shut_off('PUMP2', pump_op)

Correspondingly, the controlled pump opening can be simulated using:

tc = 1 # pump opening period [s]
ts = 0 # pump opening start time [s]
se = 1 # end open percentage [s]
m = 1 # opening constant [dimensionless]
pump_op = [tc,ts,se,m]
tm.pump_start_up('PUMP2',pump_op)

It should be noted that a check valve is assumed in each pump, indicating
that the reverse flow will be prevented immediately.

Leaks

In TSNet, leaks and bursts are assigned to the network nodes.
A leak is defined by specifying the leaking node name and the
emitter coefficient (\(k_l\)):

emitter_coeff = 0.01 # [m^3/s/(m H20)^(1/2)]
tm.add_leak('JUNCTION-22', emitter_coeff)

Existing leaks should be included in the initial condition solver
(WNTR simulator);
thus, it is necessary to define the leaks before calculating
the initial conditions.
For more information about the inclusion of leaks in steady state
calculation, please refer to WNTR documentation [WNTRSi].
During the transient simulation, the leaking node is modeled
using the two compatibility equations, a continuity equation, and an orifice
equation which quantifies the leak discharge (\(Q_l\)):

\[Q_l = k_l \sqrt{{H_p}_l}\]

where \({H_p}_l\) is the pressure head at the leaking node.
Moreover, if the pressure head is negative, the leak discharge
will be set to zero, assuming a backflow preventer is installed
on the leaking node.

Bursts

The simulation of burst and leaks is very similar. They share similar
set of governing equations. The only difference is that the burst opening
is simulated only during the transient calculation and not included in the
initial condition calculation.
In other words, using burst, the user can model new and evolving condition,
while the leak model simulates an existing leak in the system.
In TSNet, the burst is assumed to be developed
linearly, indicating that the burst area increases linearly from zero to
a size specified by the user during the specified time period.
Thus, a burst event can be modeled by defining the start and end time of the
burst, and the final emitter coefficient when the burst
is fully developed:

ts = 1 # burst start time
tc = 1 # time for burst to fully develop
final_burst_coeff = 0.01 # final burst coeff [m^3/s/(m H20)^(1/2)]
tm.add_burst('JUNCTION-20', ts, tc, final_burst_coeff)

Demand Pulse

TSNet simulates transients generated by instantaneous demand pulse by allowing the demand
coefficient to change with time
We assume that the amplitude of a demand pulse (\(pa(t)\)) follows a symmetrical trapezoidal
time-domain function, as illustrated in Figure 9; thus,
the demand pulse can be modeled by defining the start time (\(ts\)),
the total duration (\(tc\)), the transmission time (\(tp\)),
and the peak of the amplitude (\(dp\)).
Moreover, it should be noted that the assumed trapezoidal pulse shape is defined by method
demandpulse() in model module.
It can be easily modified to take any shape with moderate coding efforts.
Subsequently, the time-varying demand coefficient is defined as
\(k(t) = k_0 + k_0\times pa(t)\).

[image: demandpulse]

Figure 9 Demand pulse curve

A demand pulse shape is defined and assigned to a specified junction:

tc = 1 # total demand period [s]
ts = 1 # demand pulse start time [s]
tp = 0.2 # demand pulse transmission time [s]
dp = 1 # demand peak amplitude [unitless]
demand_pulse = [tc,ts,tp,dpa]
tm.add_demand_pulse('N2',demand_pulse)

Simulation Results

Results Structure

Simulation results are returned and saved in the
tsnet.network.model.TransientModel object
for each node and link in the networks.

Node results include the following attributes:

	Head [m]

	Emitter discharge (including leaks and bursts) [\(m^3/s\)]

	Actual demand discharge [\(m^3/s\)]

Link results include the following attributes:

	Head at start node [m]

	Flow velocity at start node [\(m^3/s\)]

	Flow rate at start node [\(m^3/s\)]

	Head at end node [m]

	Flow velocity at end node [\(m^3/s\)]

	Flow rate at end node [\(m^3/s\)]

The result for each attribute is a Numpy array, representing the time
history of the simulation results, the length of
which equals the total number of simulation time steps (\(tn\)).

For example, the results of head, emitter discharge and demand discharge
at node ‘JUNCTION-105’ can be accessed by:

node = tm.get_node['JUNCTION-105']
head = node.head
emitter_discharge = node.emitter_discharge
demand_discharge = node.demand_discharge

To obtain the results on pipe ‘LINK-40’:

pipe = tm.get_link('LINK-40')
start_head = pipe.start_node_head
end_head = pipe.end_node_head
start_velocity = pipe.start_node_velocity
end_velocity = pipe.end_node_velocity
start_flowrate = pipe.start_node_flowrate
end_flowrate = pipe.end_node_flowrate

Time Step and Time Stamps

Additionally, the time step (in seconds) and the time stamps (in seconds
from the start of the simulation) are also stored in the
tsnet.network.model.TransientModel object. They can be retrieved
by:

dt = tm.time_step
tt = tm.simulation_timestamps

The results can then be plotted with respect to the time stamps using
matplotlib or any other preferred package, as shown in Figure 10:

import matplotlib.pyplot as plt
plt.plot(tt ,head)

[image: tnet2_node]

Figure 10 Head results at JUNCTION-105

Results Retrieval

The tsnet.network.model.TransientModel object, including
the information of the network, operation rules, and the simulated results,
is saved in the file results_obj.obj, located in the current folder.
The name of the results file is defined by the input parameter result_obj.
If result_obj is not given, the default results file is results.obj.

To retrieve the results from a previously completed simulation,
one can read the tsnet.network.model.TransientModel object
from the results_obj.obj file and access results from the objet by:

import pickle
file = open('results.obj', 'rb')
tm = pickle.load(file)

Runtime and Progress

At the beginning of transient simulation,
TSNet will report the approximation simulation time
based on the calculation time of first few time
steps and the total number of time steps.
Additionally, the computation progress will also printed on the screen
as the simulation proceeds, as shown in Figure 11.

[image: time]

Figure 11 Runtime output about calculation time and process.

Example Applications

Example 1 - End-valve closure

This example shows how to simulate the closure of a
valve located at the boundary of a network. The first example
network is shown below in Figure 12, adopted from [[STWY67],WOLB05]_.
It comprises 9 pipes, 8 junctions, one reservoir, 3 closed loops,
and one valve located at the downstream end of the system.
There are five steps that the user needs to take to run the
transient simulation using the TSNet package:

[image: tnet1]

Figure 12 Tnet1 network graphics

	Import TSNet package, read the EPANET INP file,
and create transient model object.

import tsnet
Open an example network and create a transient model
tm = tsnet.network.TransientModel('/Users/luxing/Code/TSNet/examples/networks/Tnet1.inp')

	Set the wave speed for all pipes to \(1200m/s\),
time step to \(0.1s\), and simulation period
to \(60s\).

tm.set_wavespeed(1200.) # m/s

Set time options
tf = 20 # simulation period [s]
tm.set_time(tf)

	Set valve operating rules, including how long it takes
to close the valve (\(tc\)), when to start close the
valve (\(ts\)), the opening percentage when the closure
is completed (\(se\)), and the shape of the closure
operating curve (\(m\), \(1\) stands for linear closure,
\(2\) stands for quadratic closure).

ts = 5 # valve closure start time [s]
tc = 1 # valve closure period [s]
se = 0 # end open percentage [s]
m = 2 # closure constant [dimensionless]
tm.valve_closure('VALVE',[tc,ts,se,m])

Initialize steady state simulation

	Compute steady state results to establish the initial
condition for transient simulation.

tm = tsnet.simulation.Initializer(tm,t0)

Transient simulation
tm = tsnet.simulation.MOCSimulator(tm)

	Run transient simulation and specify the name of the results file.

report results
node = ['N2','N3']
tm.plot_node_head(node)

After the transient simulation, the results at nodes and links
will be returned and stored in the transient model (tm) instance.
The time history of flow rate on the start node of pipe P2
throughout the simulation can be retrieved by:

>>> print(tm.links['P2'].start_node_flowrate)

To plot the head results at N3:

yields Figure 13:

[image: tnet1_node]

Figure 13 Tnet1 - Head at node N3.

Similarly, to plot the flow rate results in pipe P2:

yields Figure 14:

[image: tnet1_pipe]

Figure 14 Tnet1 - Flow rate at the start and end node of pipe P2.

Example 2 - Pump operations

This example illustrates how the package models
a transient event resulting from a controlled pump shut-off
, i.e., the pump speed is ramped down. This example
network, Tnet2, is shown below in Figure 15. Tnet2 comprises 113 pipes,
91 junctions, 2 pumps, 2 reservoir, 3 tanks, and one valve located in the
middle of the network.
A transient simulation of 50 seconds is generated by shutting off PUMP2.
There are five steps user needs to take:

[image: tnet2]

Figure 15 Tnet2 network graphics

	Import TSNet package, read the EPANET INP file,
and create transient model object.

import tsnet
open an example network and create a transient model
inp_file = '/Users/luxing/Code/TSNet/examples/networks/Tnet2.inp'
tm = tsnet.network.TransientModel(inp_file)

	Set the wave speed for all pipes to be \(1200m/s\) and
simulation period to be \(50s\). Use suggested time
step.

Set wavespeed
tm.set_wavespeed(1200.)
Set time step
tf = 20 # simulation period [s]
tm.set_time(tf)

	Set pump operating rules, including how long it takes
to shutdown the pump (\(tc\)), when to the shut-off starts
(\(ts\)), the pump speed multiplier value when the shut-off
is completed (\(se\)), and the shape of the shut-off
operation curve (\(m\), \(1\) stands for linear closure,
\(2\) stands for quadratic closure).

Set pump shut off
tc = 1 # pump closure period
ts = 1 # pump closure start time
se = 0 # end open percentage
m = 1 # closure constant
pump_op = [tc,ts,se,m]
tm.pump_shut_off('PUMP2', pump_op)

	Compute steady state results to establish the initial
condition for transient simulation.

Initialize steady state simulation
t0 = 0. # initialize the simulation at 0s
engine = 'DD' # or PPD
tm = tsnet.simulation.Initializer(tm, t0, engine)

	Run transient simulation and specify the name of the results file.

Transient simulation
results_obj = 'Tnet2' # name of the object for saving simulation results.head
tm = tsnet.simulation.MOCSimulator(tm,results_obj)

After the transient simulation, the results at nodes and links
will be returned to the transient model (tm) instance, which is then
stored in Tnet2.obj.
The actual demand discharge at JUNCTION-105 throughout the simulation
can be retrieved by:

>>> print(tm.nodes['JUNCTION-105'].demand_discharge)

To plot the head results at JUNCTION-105:

import matplotlib.pyplot as plt
node = 'JUNCTION-105'
node = tm.get_node(node)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='w')
plt.plot(tm.simulation_timestamps, node._head, 'k', lw=3)
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Pressure Head at Node %s '%node)
plt.xlabel("Time [s]", fontsize=14)
plt.ylabel("Pressure Head [m]", fontsize=14)

plt.legend(loc='best')

yields Figure 10:

[image: tnet2_node]

Figure 16 Tnet2 - Head at node JUNCTION-105.

Similarly, to plot the velocity results in PIPE-109:

fig.savefig('./docs/figures/tnet2_node.png', format='png',dpi=100)

pipe = 'PIPE-109'
pipe = tm.get_link(pipe)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='w')
plt.plot(tm.simulation_timestamps,pipe.start_node_velocity,label='Start Node')
plt.plot(tm.simulation_timestamps,pipe.end_node_velocity,label='End Node')
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Velocity of Pipe %s '%pipe)
plt.xlabel("Time [s]")
plt.ylabel("Velocity [m/s]")
plt.legend(loc='best')

yields Figure 17:

[image: tnet2_pipe]

Figure 17 Tnet2 - Velocity at the start and end node of PIPE-109.

Example 3 - Burst and leak

This example reveals how TSNet simulates pipe bursts and leaks.
This example network, adapted from [OSBH08], is shown below in Figure 18.
Tnet3 comprises 168 pipes, 126 junctions, 8 valve, 2 pumps,
one reservoir, and two tanks.
The transient event is generated by a burst and a background leak.
There are five steps that the user would need to take:

[image: tnet3]

Figure 18 Tnet3 network graphics

	Import TSNet package, read the EPANET INP file,
and create transient model object.

import tsnet
open an example network and create a transient model
inp_file = '/Users/luxing/Code/TSNet/examples/networks/Tnet3.inp'
tm = tsnet.network.TransientModel(inp_file)

	The user can import custom wave speeds for each pipe.
To demonstrate how to assign different wave speed,
we assume that the wave speed for the pipes is normally distributed
with mean of \(1200 m/s\) and standard deviation of
:math: 100m/s. Then, assign the randomly generated wave speed
to each pipe in the network according to the order the pipes
defined in the INP file. Subsequently, set the simulation period
as \(20s\), and use suggested time step.

Set wavespeed
import numpy as np
wavespeed = np.random.normal(1200., 100., size=tm.num_pipes)
tm.set_wavespeed(wavespeed)
Set time step
tf = 20 # simulation period [s]
tm.set_time(tf)

	Define background leak location, JUNCTION-22,
and specify the emitter coefficient.
The leak will be included in the initial condition calculation.
See WNTR documentation [WNTRSi] for more info about leak simulation.

Add leak
emitter_coeff = 0.01 # [m^3/s/(m H20)^(1/2)]
tm.add_leak('JUNCTION-22', emitter_coeff)

	Compute steady state results to establish the initial
condition for transient simulation.

Initialize steady state simulation
t0 = 0. # initialize the simulation at 0s
engine = 'PDD' # or Epanet
tm = tsnet.simulation.Initializer(tm, t0, engine)

	Set up burst event, including burst location, JUNCTION-20,
burst start time (\(ts\)),
time for burst to fully develop (\(tc\)), and the final emitter
coefficient (final_burst_coeff).

Add burst
ts = 1 # burst start time
tc = 1 # time for burst to fully develop
final_burst_coeff = 0.01 # final burst coeff [m^3/s/(m H20)^(1/2)]
tm.add_burst('JUNCTION-20', ts, tc, final_burst_coeff)

	Run transient simulation and specify the name of the results file.

Transient simulation
result_obj = 'Tnet3' # name of the object for saving simulation results
tm = tsnet.simulation.MOCSimulator(tm,result_obj)

After the transient simulation, the results at nodes and links
will be returned to the transient model (tm) instance,
which is subsequently stored in Tnet3.obj.

To understand how much water has been lost through the leakage
at JUNCTION-22, we can plot the leak discharge results at JUNCTION-22:

import matplotlib.pyplot as plt
node = 'JUNCTION-22'
node = tm.get_node(node)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps,node.emitter_discharge)
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Leak discharge at Node %s '%node)
plt.xlabel("Time [s]")
plt.ylabel("Leak discharge [m^3/s]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

yields Figure 19:

[image: tnet3_leak]

Figure 19 Tnet3 - Leak discharge at node JUNCTION-22.

Similarly, to reveal how much water has been wasted through the burst event
at JUNCTION-20, we can plot the burst discharge results at JUNCTION-20:

node = 'JUNCTION-20'
node = tm.get_node(node)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps,node.emitter_discharge)
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Burst discharge at Node %s '%node)
plt.xlabel("Time [s]")
plt.ylabel("Burst discharge [m^3/s]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

yields Figure 20:

[image: tnet3_burst]

Figure 20 Tnet3 - Burst discharge at node JUNCTION-20.

Additionally, to plot the velocity results in LINK-40:

pipe = 'LINK-40'
pipe = tm.get_link(pipe)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps,pipe.start_node_velocity,label='Start Node')
plt.plot(tm.simulation_timestamps,pipe.end_node_velocity,label='End Node')
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Velocity of Pipe %s '%pipe)
plt.xlabel("Time [s]")
plt.ylabel("Velocity [m/s]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

yields Figure 21:

[image: tnet3_pipe]

Figure 21 Tnet3 - Velocity at the start and end node of LINK-40.

Moreover, we can plot head results at some further nodes, such as
JUNCTION-8, JUNCTION-16, JUNCTION-45, JUNCTION-90, by:

node1 = tm.get_node('JUNCTION-8')
node2 = tm.get_node('JUNCTION-16')
node3 = tm.get_node('JUNCTION-45')
node4 = tm.get_node('JUNCTION-90')
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps, node1._head, label='JUNCTION-8')
plt.plot(tm.simulation_timestamps, node2._head, label='JUNCTION-16')
plt.plot(tm.simulation_timestamps, node3._head, label='JUNCTION-45')
plt.plot(tm.simulation_timestamps, node4._head, label='JUNCTION-90')
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Head on Junctions')
plt.xlabel("Time [s]")
plt.ylabel("Head [m]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

The results are demonstrated in Figure 22. It can be noticed that
the amplitude of the pressure transient at JUNCTION-8 and JUNCTION-16
is greater than that at other two junctions which are further away from
JUNCTION-20, where the burst occurred.

[image: tnet3_multi]

Figure 22 Tnet3 - Head at multiple junctions.

More examples are includeded in https://github.com/glorialulu/TSNet/tree/master/examples.

Comparison with Hammer

During the development process, we have consistently compared TSNet results with
Bentley Hammer [HAMMER] using different networks and many different transient events.
In this section, we present the comparison between TSNet and Hammer results.
The Hammer models used to generate the events is also included
in the GitHub example directory (https://github.com/glorialulu/TSNet/tree/master/examples/networks)
for the user’s reference.

Tnet 0

We first show the comparison for a simple network,
consisting of one reservoir, two pipes, and one valve, as illustrated in Figure 23.
The wave speed for both pipes is \(1200m/s\), and lengths and diameters are given in the figure.
The transient event is generated by closing the end-valve at the beginning of the simulation
during 2s; thus, the flow rate at the end valve decreases linearly from \(0.05m^3/s\) at \(t=0s\) to
\(0m^3/s\) at \(t=2s\) and remains zero thereafter.
Figure 24 (a) shows the flow rate through the valve, and
Figure 24 (b) presents the pressure transients generated at node N-1 during 60s simulation period.
The solid line represents TSNet results and the dashed-dotted line shows Hammer results.
These results indicate a perfect match between TSNet and Hammer simulation results for this simple network.

[image: tnet0_network]

Figure 23 Topology of a simple network.

[image: tnet0_hammer]

Figure 24 Comparison of TSNet and Hammer results: (a) flow at the valve; (b) pressure head at N-1.

Tnet 3

We then show the comparison between TSNet and Hammer results for
a more complicated network, Tnet3,
for three different transient events:

	Shut down of PUMP-1,

	Burst at JUNCTION-73, and

	Closure of VALVE-1.

The results for the three transient-generating events are shown in
Figure 25, Figure 26, and Figure 27, respectively.

	We would like to note beforehand that we do not expect to
obtain the exact same results from TSNet
as Hammer since different numerical schemes were implemented,
such as wave speed adjustment, pressure dependent demand, and boundary conditions.

Pump shut-down

Both TSNet and Hammer are utilized to simulate
the shut down of PUMP-1.
The time step is specified as 0.002s in both software.
Figure 25 reports the pressure change with respect to the nominal pressure
at multiple junctions, where the solid lines represent TSNet results
and the dashed lines show Hammer results.
TSNet and Hammer results are very similar to each other
in terms of attenuation and phase shift throughout the 20s simulation period,
despite slight discrepancies, which can be explained by
the different wave speed adjustment schemes and boundary condition configurations adopted
by the two software.

[image: pump_hammer]

Figure 25 Comparison of pressure transients at multiple junctions generated by shutting down PUMP-1 in TNet3:
TSNet (solid lines) Hammer (dashed lines) results.

Burst event

Aburst event was simulated at Junction-73 using both TSNet and Hammer.
Figure 26 reports the pressure change with respect to the nominal pressure
at multiple junctions, where the solid lines represent TSNet results,
and the dashed lines show Hammer results.
It can be observed that during the first transient cycle, i.e., around 0-8s,
TSNet and Hammer results exhibit very good agreement with each other.
Although the discrepancies increase a bit in terms of attenuation and phase shift during the latter period,
the overall match is satisfactory considering that different time step and wave speed adjustment schemes
are adopted in the two software.

[image: burst_hammer]

Figure 26 Comparison of pressure transients at multiple junctions generated by the burst at JUNCTION-73 in Tnet3:
TSNet (solid lines) Hammer (dashed lines) results.

Valve closure

Both TSNet and Hammer are utilized to simulate
the closure of VALVE-1.
The comparison of the results is presented in Figure 27.
Again, adequate resemblance can be observed between the TSNet (a) and
Hammer results (b). Considering that pressure transients are of smaller amplitude and
more chaotic, the results are presented in two separate plots with same scale for clarity.

[image: valve_hammer]

Figure 27 Comparison of pressure transients at multiple junctions generated by closing VALVE-1 in Tnet3:
(a): TSNet results, (b): Hammer results.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/glorialulu/TSNet/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

TSNet could always use more documentation, whether as part of the
official TSNet docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/glorialulu/TSNet/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up TSNet for local development.

	Fork the TSNet repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/TSNet.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv TSNet
$ cd TSNet/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 TSNet tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6 and 3.7, and for PyPy. Check
https://travis-ci.org/glorialulu/TSNet/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test .\tests\test_tsnet.py

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Lu Xing <xinglu@utexas.edu>

	Lina Sela <linasela@utexas.edu>

Contributors

This package is being developed and supported by the WATSUP group at UT Austin.
Contributing group members

	Gerardo Andres Riano Briceno <griano@utexas.edu>

	Ahmed A. Abokifa <ahmed.abokifa@utexas.edu>

History

0.1.0 (2019-08-15)

	First release on PyPI.

0.1.1 (2019-09-21)

0.1.2 (2020-01-20)

	Fixed bugs about dead end and single pipe.

	Added plot and change detection methods.

0.2.0 (2020-4-23)

	Added quasi-steady and unsteady friction model.

	Added open and closed surge tanks.

	Added demand-pulse simulation.

	Updated docs.

0.2.1 (2020-09-09)

	Fixed minor bugs about valve default settings.

	Updated documentation.

	Updated WNTR compatibility.

0.2.2 (2020-09-24)

	Updated WNTR compatibility.

0.2.3 (2021-11-12)

	Only support WNTR version up until 0.3.0

0.2.4 (2022-06-17)

	fix minor issues regarding reporting messages

	Only support WNTR version up until 0.2.3.

0.3.0 (2023-02-22)

	Support WNTR version 1.0.0

	Test on python 3.10 and 3.11.

	Drop supports for Python 3.6 and 3.7

tsnet package

Subpackages

	tsnet.network package
	Submodules

	tsnet.network.control module

	tsnet.network.discretize module

	tsnet.network.model module

	tsnet.network.topology module

	Module contents

	tsnet.postprocessing package
	Submodules

	tsnet.postprocessing.time_history module

	Module contents

	tsnet.simulation package
	Submodules

	tsnet.simulation.initialize module

	tsnet.simulation.main module

	tsnet.simulation.single module

	tsnet.simulation.solver module

	Module contents

	tsnet.utils package
	Submodules

	tsnet.utils.calc_parabola_vertex module

	tsnet.utils.memo module

	tsnet.utils.print_time_delta module

	tsnet.utils.valve_curve module

	Module contents

Module contents

Top-level package for tsnet.

tsnet.network package

Submodules

tsnet.network.control module

The tsnet.network.control module includes method to define
network controls of the pump and valve.These control modify
parameters in the network during transient simulation.

	
tsnet.network.control.valveclosing(dt, tf, valve_op)

	Define valve operation curve (percentage open v.s. time)

	Parameters

	
	dt (float) – Time step

	tf (float) – Simulation Time

	valve_op (list) – Contains parameters to define valve operation rule
valve_op = [tc,ts,se,m]
tc : the duration takes to close the valve [s]
ts : closure start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	Returns

	s – valve operation curve

	Return type

	list

	
tsnet.network.control.valveopening(dt, tf, valve_op)

	Define valve operation curve (percentage open v.s. time)

	Parameters

	
	dt (float) – Time step

	tf (float) – Simulation Time

	valve_op (list) – Contains parameters to define valve operation rule
valve_op = [tc,ts,se,m]
tc : the duration takes to close the valve [s]
ts : closure start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	Returns

	s – valve operation curve

	Return type

	list

	
tsnet.network.control.pumpclosing(dt, tf, pump_op)

	Define pump operation curve (percentage open v.s. time)

	Parameters

	
	dt (float) – Time step

	tf (float) – Simulation Time

	valve_op (list) – Contains parameters to define valve operation rule
valve_op = [tc,ts,se,m]
tc : the duration takes to close the valve [s]
ts : closure start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	Returns

	s – valve operation curve

	Return type

	list

	
tsnet.network.control.pumpopening(dt, tf, pump_op)

	Define pump operation curve (percentage open v.s. time)

	Parameters

	
	dt (float) – Time step

	tf (float) – Simulation Time

	pump_op (list) – Contains parameters to define pump operation rule
pump_op = [tc,ts,se,m]
tc : the duration takes to start up the pump [s]
ts : open start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	Returns

	s – valve operation curve

	Return type

	list

	
tsnet.network.control.burstsetting(dt, tf, ts, tc, final_burst_coeff)

	Calculate the burst area as a function of simulation time

	Parameters

	
	dt (float) – Time step

	tf (float) – Simulation Time

	ts (float) – Burst start time

	tc (float) – Time for burst to fully develop

	final_burst_coeff (list or float) – Final emitter coefficient at the burst nodes

	
tsnet.network.control.demandpulse(dt, tf, tc, ts, tp, dp)

	Calculate demand pulse multiplier

Parameters
dt : float

Time step

	tffloat

	Simulation Time

	tcfloat

	Total pulse duration

	tsfloat

	Pulse start time

	tpfloat

	Pulse increase time

	dpfloat

	Pulse multiplier

tsnet.network.discretize module

The tsnet.network.discretize contains methods to perform
spatial and temporal discretization by adjusting wave speed
and time step to solve compatibility equations in case of
uneven wave travel time.

	
tsnet.network.discretize.discretization(tm, dt)

	Discretize in temporal and spatial space using wave speed adjustment scheme.

	Parameters

	
	tm (tsnet.network.geometry.TransientModel) – Network

	dt (float) – User defined time step

	Returns

	tm – Network with updated parameters

	Return type

	tsnet.network.geometry.TransientModel

	
tsnet.network.discretize.max_time_step(tm)

	Determine the maximum time step based on Courant’s criteria.

	Parameters

	tm (tsnet.network.geometry.TransientModel) – Network

	Returns

	max_dt – Maximum time step allowed for this network

	Return type

	float

	
tsnet.network.discretize.discretization_N(tm, dt)

	Discretize in temporal and spatial space using wave speed adjustment scheme.

	Parameters

	
	tm (tsnet.network.geometry.TransientModel) – Network

	dt (float) – User defined time step

	Returns

	tm – Network with updated parameters

	Return type

	tsnet.network.geometry.TransientModel

	
tsnet.network.discretize.max_time_step_N(tm, N)

	Determine the maximum time step based on Courant’s criteria.

	Parameters

	tm (tsnet.network.geometry.TransientModel) – Network

	Returns

	max_dt – Maximum time step allowed for this network

	Return type

	float

	
tsnet.network.discretize.cal_N(tm, dt)

	Determine the number of computation unites (N_i) for each pipes.

	Parameters

	
	tm (tsnet.network.geometry.TransientModel) – Network

	dt (float) – Time step for transient simulation

	
tsnet.network.discretize.adjust_wavev(tm)

	Adjust wave speed and time step to solve compatibility equations.

	Parameters

	tm (tsnet.network.geometry.TransientModel) – Network

	Returns

	
	tm (tsnet.network.geometry.TransientModel) – Network with adjusted wave speed.

	dt (float) – Adjusted time step

tsnet.network.model module

The tsnet.network.geometry read in the geometry defined by EPANet
.inp file, and assign additional parameters needed in transient
simulation later in tsnet.

	
class tsnet.network.model.TransientModel(inp_file)

	Bases: wntr.network.model.WaterNetworkModel

Transient model class.
:param inp_file_name: Directory and filename of EPANET inp file to load into the

WaterNetworkModel object.

	
set_wavespeed(wavespeed=1200, pipes=None)

	Set wave speed for pipes in the network

	Parameters

	
	wavespeed (float or int or list, optional) – If given as float or int, set the value as wavespeed
for all pipe; If given as list set the corresponding
value to each pipe, by default 1200.

	pipes (str or list, optional) – The list of pipe to define wavespeed,
by default all pipe in the network.

	
set_roughness(roughness, pipes=None)

	Set roughness coefficient for pipes in the network

	Parameters

	
	roughness (float or int or list) – If given as float or int, set the value as roughness
for all pipe; If given as list set the corresponding
value to each pipe. Make sure to define it using the
same method (H-W or D-W) as defined in .inp file.

	pipes (str or list, optional) – The list of pipe to define roughness coefficient,
by default all pipe in the network.

	
set_time(tf, dt=None)

	Set time step and duration for the simulation.

	Parameters

	
	tf (float) – Simulation period

	dt (float, optional) – time step, by default maximum allowed dt

	
set_time_N(tf, N=2)

	Set time step and duration for the simulation.

	Parameters

	
	tf (float) – Simulation period

	N (integer) – Number of segments in the critical pipe

	
add_leak(name, coeff)

	Add leak to the transient model

	Parameters

	
	name (str, optional) – The name of the leak nodes, by default None

	coeff (list or float, optional) – Emitter coefficient at the leak nodes, by default None

	
add_burst(name, ts, tc, final_burst_coeff)

	Add leak to the transient model

	Parameters

	
	name (str) – The name of the leak nodes, by default None

	ts (float) – Burst start time

	tc (float) – Time for burst to fully develop

	final_burst_coeff (list or float) – Final emitter coefficient at the burst nodes

	
add_blockage(name, percentage)

	Add blockage to the transient model

	Parameters

	
	name (str) – The name of the blockage nodes, by default None

	percentage (list or float) – The percentage of the blockage flow discharge

	
valve_closure(name, rule, curve=None)

	Set valve closure rule

	Parameters

	
	name (str) – The name of the valve to close

	rule (list) – Contains paramters to define valve operation rule
rule = [tc,ts,se,m]
tc : the duration takes to close the valve [s]
ts : closure start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	curve (list) – [(open_percentage[i], 1/kl[i]) for i]
List of open percentage and the corresponding
inverse of valve coefficient

	
valve_opening(name, rule, curve=None)

	Set valve opening rule

	Parameters

	
	name (str) – The name of the valve to close

	rule (list) – Contains paramters to define valve operation rule
rule = [tc,ts,se,m]
tc : the duration takes to open the valve [s]
ts : opening start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	curve (list) – [(open_percentage[i], kl[i]) for i]
List of open percentage and the corresponding
valve coefficient

	
pump_shut_off(name, rule)

	Set pump shut off rule

	Parameters

	
	name (str) – The name of the pump to shut off

	rule (list) – Contains paramaters to define valve operation rule
rule = [tc,ts,se,m]
tc : the duration takes to close the pump [s]
ts : closure start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	
pump_start_up(name, rule)

	Set pump start up rule

	Parameters

	
	name (str) – The name of the pump to shut off

	rule (list) – Contains paramaters to define valve operation rule
rule = [tc,ts,se,m]
tc : the duration takes to close the valve [s]
ts : closure start time [s]
se : final open percentage [s]
m : closure constant [unitless]

	
add_demand_pulse(name, rule)

	Add demand pulse to junction

	Parameters

	
	name (str or list) –
	The name of junctions to add demand pulse

	rule : list

Contains paramters to define valve operation rule

	= [tc,ts,stay,dp,m] (rule) – tc : total duration of the pulse [s] [s]
ts : start time of demand [s]
stay: duration of the demand to stay at peak level [s]
dp : demand pulse multiplier [uniteless]

	
add_surge_tank(name, shape, tank_type='open')

	Add surge tank

	Parameters

	
	name (str) – the name of the node to add a surge tank

	shape (list) –
	if closed: [As, Ht, Hs]

	As : cross-sectional area of the surge tank
Ht : tank height
Hs : initial water height in the surge tank

if open: [As]

	tank_type (int) – type of the surge tank, “closed” or “open”,
by default ‘open’

	
detect_pressure_change(name, threshold, drift, show=False, ax=None)

	Detect pressure change in simulation results

	Parameters

	
	name (str) – The name of the node

	threshold (positive number, optional (default = 1)) – amplitude threshold for the change in the data.

	drift (positive number, optional (default = 0)) – drift term that prevents any change in the absence of change.

	show (bool, optional (default = True)) – True (1) plots data in matplotlib figure, False (0) don’t plot.

	ax (a matplotlib.axes.Axes instance, optional (default = None)) –

	
plot_node_head(name, ax=None)

	Detect pressure change in simulation results

	Parameters

	
	name (str or list) – The name of node

	ax (a matplotlib.axes.Axes instance, optional (default = None)) –

tsnet.network.topology module

The tsnet.network.topology figure out the topology, i.e.,
upstream and downstream adjacent links for each pipe, and
store the information in lists.

	
tsnet.network.topology.topology(wn)

	Figure out the topology of the network

	Parameters

	
	wn (wntr.network.model.WaterNetworkModel) – .inp file used for EPAnet simulation

	npipe (integer) – Number of pipes

	Returns

	
	links1 (list) – The id of adjacent pipe on the start node.
The sign represents the direction of the pipe.
+ : flowing into the junction
- : flowing out from the junction

	links2 (list) – The id of adjacent pipe on the end node.
The sign represents the direction of the pipe.
+ : flowing into the junction
- : flowing out from the junction

	utype (list) – The type of the upstream adjacent links.
If the link is not pipe, the name of that link
will also be included.
If there is no upstream link, the type of the start node
will be recorded.

	dtype (list) – The type of the downstream adjacent links.
If the link is not pipe, the name of that link
will also be included.
If there is no downstream link, the type of the end node
will be recorded.

Module contents

The tsnet.network package contains methods to define
1. a water network geometry,
2. network topology,
3. network control, and
4 .spatial and temporal discretization.

tsnet.postprocessing package

Submodules

tsnet.postprocessing.time_history module

The tsnet.postprocessing.time_history module contains functions
to plot the time history of head and velocity at the start and
end point of a pipe

	
tsnet.postprocessing.time_history.plot_head_history(pipe, H, wn, tt)

	Plot Head history on the start and end node of a pipe

	Parameters

	
	pipe (str) – Name of the pipe where you want to report the head

	H (list) – Head results

	wn (wntr.network.model.WaterNetworkModel) – Network

	tt (list) – Simulation timestamps

	
tsnet.postprocessing.time_history.plot_velocity_history(pipe, V, wn, tt)

	Plot Velocity history on the start and end node of a pipe

	Parameters

	
	pipe (str) – Name of the pipe where you want to report the head

	V (list) – velocity results

	wn (wntr.network.model.WaterNetworkModel) – Network

	tt (list) – Simulation timestamps

Module contents

The tsnet.postprocessing package contains functions to
postprocess the simulation results.

tsnet.simulation package

Submodules

tsnet.simulation.initialize module

The tsnet.simulation.initialize contains functions to
1. Initialize the list containing numpy arrays for velocity and head.
2. Calculate initial conditions using Epanet engine.
3. Calculate D-W coefficients based on initial conditions.
4. Calculate demand coefficients based on initial conditions.

	
tsnet.simulation.initialize.Initializer(tm, t0, engine='DD')

	Initial Condition Calculation.

Initialize the list containing numpy arrays for velocity and head.
Calculate initial conditions using Epanet engine.
Calculate D-W coefficients based on initial conditions.
Calculate demand coefficients based on initial conditions.

	Parameters

	
	tm (tsnet.network.geometry.TransientModel) – Simulated network

	t0 (float) – time to calculate initial condition

	engine (string) – steady state calculation engine:
DD: demand driven;
PDD: pressure dependent demand,
by default DD

	Returns

	tm – Network with updated parameters

	Return type

	tsnet.network.geometry.TransientModel

	
tsnet.simulation.initialize.cal_demand_coef(demand, pipe, Hs, He, t0=0.0)

	Calculate the demand coefficient for the start and end node of the pipe.

	Parameters

	
	demand (list) – Demand at the start (demand[0]) and end demand[1] node

	pipe (object) – Pipe object

	Hs (float) – Head at the start node

	He (float) – Head at the end node

	t0 (float, optional) – Time to start initial condition calculation, by default 0

	Returns

	pipe – Pipe object with calculated demand coefficient

	Return type

	object

	
tsnet.simulation.initialize.cal_roughness_coef(pipe, V, hl)

	Calculate the D-W roughness coefficient based on initial conditions.

	Parameters

	
	pipe (object) – Pipe object

	V (float) – Initial flow velocity in the pipe

	hl (float) – Initial head loss in the pipe

	Returns

	pipe – Pipe object with calculated D-W roughness coefficient.

	Return type

	object

	
tsnet.simulation.initialize.pump_operation_points(tm)

	

tsnet.simulation.main module

The tsnet.simulation.main module contains function to perform
the workflow of read, discretize, initial, and transient
simulation for the given .inp file.

	
tsnet.simulation.main.MOCSimulator(tm, results_obj='results', friction='steady')

	MOC Main Function

	Parameters

	
	tm (tsnet.network.model.TransientModel) – Network

	results_obj (string, optional) – the name of the results file, by default ‘results’

	friction (string, optional) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	Returns

	tm – Simulated network

	Return type

	tsnet.network.model.TransientModel

tsnet.simulation.single module

The tsnet.simulation.single contains methods to perform MOC
transient simulation on a single pipe, including
1. inner pipe
2. left boundary pipe (without C- charateristic grid)
3. right boundary pipe (without C+ characteristic grid)

	
tsnet.simulation.single.inner_pipe(linkp, pn, dt, links1, links2, utype, dtype, p, H0, V0, H, V, H10, V10, H20, V20, pump, valve, friction, dVdt, dVdx, dVdt10, dVdx10, dVdt20, dVdx20)

	MOC solution for an individual inner pipe.

	Parameters

	
	linkp (object) – Current pipe object

	pn (int) – Current pipe ID

	dt (float) – Time step

	H (numpy.ndarray) – Head of current pipe at current time step [m]

	V (numpy.ndarray) – Velocity of current pipe at current time step [m/s]

	links1 (list) – Upstream adjacent pipes

	links2 (list) – Downstream adjacent pipes

	utype (list) – Upstream adjacent link type, and if not pipe, their name

	dtype (list) – Downstream adjacent link type, and if not pipe, their name

	p (list) – pipe list

	H0 (numpy.ndarray) – Head of current pipe at previous time step [m]

	V0 (numpy.ndarray) – Velocity of current pipe at previous time step [m/s]

	H10 (list) – Head of left adjacent nodes at previous time step [m]

	V10 (list) – Velocity of left adjacent nodes at previous time step [m/s]

	H20 (list) – Head of right adjacent nodes at previous time step [m]

	V20 (list) – Velocity of right adjacent nodes at previous time step [m/s]

	pump (list) – Characteristics of the pump

	valve (list) – Characteristics of the valve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdt (numpy.ndarray) – local instantaneous acceleration approximation to be used
for unsteady friction calculation, 0 if not
in unsteady friction mode [m/s^2]

	dVdx (numpy.ndarray) – convective instantaneous acceleration approximation to be used
for unsteady friction calculation, 0 if not
in unsteady friction mode [m/s^2]

	dVdt10 (list) – local instantaneous acceleration of left adjacent nodes at previous time step [m]

	dVdx10 (list) – convective instantaneous acceleration of left adjacent nodes at previous time step [m/s]

	dVdt20 (list) – local instantaneous acceleration of right adjacent nodes at previous time step [m]

	dVdx20 (list) – convective instantaneous acceleration of right adjacent nodes at previous time step [m/s]

	Returns

	
	H (numpy.ndarray) – Head results of the current pipe at current time step. [m]

	V (numpy.ndarray) – Velocity results of the current pipe at current time step. [m/s]

	
tsnet.simulation.single.left_boundary(linkp, pn, H, V, H0, V0, links2, p, pump, valve, dt, H20, V20, utype, dtype, friction, dVdt, dVdx, dVdt20, dVdx20)

	MOC solution for an individual left boundary pipe.

	Parameters

	
	linkp (object) – Current pipe object

	pn (int) – Current pipe ID

	H (numpy.ndarray) – Head of current pipe at current time step [m]

	V (numpy.ndarray) – Velocity of current pipe at current time step [m/s]

	links2 (list) – Downstream adjacent pipes

	p (list) – pipe list

	pump (list) – Characteristics of the pump

	valve (list) – Characteristics of the valve

	n (int) – Number of discretization of current pipe

	dt (float) – Time step

	H0 (numpy.ndarray) – Head of current pipe at previous time step [m]

	V0 (numpy.ndarray) – Velocity of current pipe at previous time step [m/s]

	H20 (list) – Head of right adjacent nodes at previous time step [m]

	V20 (list) – Velocity of right adjacent nodes at previous time step [m/s]

	utype (list) – Upstream adjacent link type, and if not pipe, their name

	dtype (list) – Downstream adjacent link type, and if not pipe, their name

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdt (numpy.ndarray) – local instantaneous velocity approximation to be used
for unsteady friction calculation, 0 if not
in unsteady friction mode [m/s^2]

	dVdx (numpy.ndarray) – convective instantaneous velocity approximation to be used
for unsteady friction calculation, 0 if not
in unsteady friction mode [m/s^2]

	dVdt20 (list) – local instantaneous acceleration of right adjacent nodes at previous time step [m]

	dVdx20 (list) – convective instantaneous acceleration of right adjacent nodes at previous time step [m/s]

	Returns

	
	H (numpy.ndarray) – Head results of the current pipe at current time step. [m]

	V (numpy.ndarray) – Velocity results of the current pipe at current time step. [m/s]

	
tsnet.simulation.single.right_boundary(linkp, pn, H0, V0, H, V, links1, p, pump, valve, dt, H10, V10, utype, dtype, friction, dVdt, dVdx, dVdt10, dVdx10)

	MOC solution for an individual right boundary pipe.

	linkpobject

	Current pipe object

	pnint

	Current pipe ID

	Hnumpy.ndarray

	Head of current pipe at current time step [m]

	Vnumpy.ndarray

	Velocity of current pipe at current time step [m/s]

	links1list

	Upstream adjacent pipes

	plist

	pipe list

	pumplist

	Characteristics of the pump

	valvelist

	Characteristics of the valve

	nint

	Number of discretization of current pipe

	dtfloat

	Time step

	H0numpy.ndarray

	Head of current pipe at previous time step [m]

	V0numpy.ndarray

	Velocity of current pipe at previous time step [m/s]

	H10list

	Head of left adjacent nodes at previous time step [m]

	V10list

	Velocity of left adjacent nodes at previous time step [m/s]

	utypelist

	Upstream adjacent link type, and if not pipe, their name

	dtypelist

	Downstream adjacent link type, and if not pipe, their name

	friction: str

	friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdt: numpy.ndarray

	local instantaneous velocity approximation to be used
for unsteady friction calculation, 0 if not
in unsteady friction mode [m/s^2]

	dVdx: numpy.ndarray

	convective instantaneous velocity approximation to be used
for unsteady friction calculation, 0 if not
in unsteady friction mode [m/s^2]

	dVdt10list

	local instantaneous acceleration of left adjacent nodes at previous time step [m]

	dVdx10list

	convective instantaneous acceleration of left adjacent nodes at previous time step [m/s]

	Returns

	
	Hnumpy.ndarray

	Head results of the current pipe at current time step. [m]

	Vnumpy.ndarray

	Velocity results of the current pipe at current time step. [m/s]

tsnet.simulation.solver module

The tsnet.simulation.solver module contains methods to solver MOC
for different grid configurations, including:
1. inner_node
2. valve_node
3. pump_node
4. source_pump
5. valve_end
6. dead_end
7. rev_end
8. add_leakage

	
tsnet.simulation.solver.Reynold(V, D)

	Calculate Reynold number

	Parameters

	
	V (float) – velocity

	D (float) – diameter

	Returns

	Re – Reynold number

	Return type

	float

	
tsnet.simulation.solver.quasi_steady_friction_factor(Re, KD)

	Update friction factor based on Reynold number

	Parameters

	
	Re (float) – velocity

	KD (float) – relative roughness height (K/D)

	Returns

	f – quasi-steady friction factor

	Return type

	float

	
tsnet.simulation.solver.unsteady_friction(Re, dVdt, dVdx, V, a, g)

	Calculate unsteady friction

	Parameters

	
	Re (float) – velocity

	dVdt (float) – local instantaneous acceleration

	dVdx (float) – instantaneous convective acceleration

	V (float) – velocity

	a (float) – wave speed

	g (float) – gravitational acceleration

	Returns

	Ju – unsteady friction factor

	Return type

	float

	
tsnet.simulation.solver.cal_friction(friction, f, D, V, KD, dt, dVdt, dVdx, a, g)

	Calculate friction term

	Parameters

	
	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	f (float) – steady friction factor

	D (float) – pipe diameter

	V (float) – pipe flow velocity

	KD (float) – relative roughness height

	dt (float) – time step

	dVdt (float) – local instantaneous acceleration

	dVdx (float) – convective instantaneous acceleration

	a (float) – wave speed

	g (float) – gravitational accelerations

	Returns

	total friction, including steady and unsteady

	Return type

	float

	
tsnet.simulation.solver.cal_Cs(link1, link2, H1, V1, H2, V2, s1, s2, g, dt, friction, dVdx1, dVdx2, dVdt1, dVdt2)

	Calculate coefficients for MOC characteristic lines

	Parameters

	
	link1 (object) – Pipe object of C+ charateristics curve

	link2 (object) – Pipe object of C- charateristics curve

	H1 (list) – List of the head of C+ charateristics curve

	V1 (list) – List of the velocity of C+ charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	s1 (list) – List of signs that represent the direction of the flow
in C+ charateristics curve

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	Returns

	
	A1 (list) – list of left adjacent pipe cross-section area

	A2 (list) – list of right adjacent pipe cross-section area

	C1 (list) – list of left adjacent pipe MOC coefficients

	C2 (list) – list of right adjacent pipe MOC coefficients

	
tsnet.simulation.solver.inner_node_unsteady(link, H0, V0, dt, g, dVdx, dVdt)

	Inner boundary MOC using C+ and C- characteristic curve with unsteady friction

	Parameters

	
	link (object) – current pipe

	H0 (list) – head at previous time step

	V0 (list) – velocity at previous time step

	dt (float) – Time step

	g (float) – Gravity acceleration

	dVdx (list) – List of convective instantaneous acceleration

	dVdt (list) – List of local instantaneous acceleration

	Returns

	
	HP (float) – Head at current pipe inner nodes at current time

	VP (float) – Velocity at current pipe inner nodes at current time

	
tsnet.simulation.solver.inner_node_quasisteady(link, H0, V0, dt, g)

	Inner boundary MOC using C+ and C- characteristic curve with unsteady friction

	Parameters

	
	link (object) – current pipe

	H0 (list) – head at previous time step

	V0 (list) – velocity at previous time step

	dt (float) – Time step

	g (float) – Gravity acceleration

	dVdx (list) – List of convective instantaneous acceleration

	dVdt (list) – List of local instantaneous acceleration

	Returns

	
	HP (float) – Head at current pipe inner nodes at current time

	VP (float) – Velocity at current pipe inner nodes at current time

	
tsnet.simulation.solver.inner_node_steady(link, H0, V0, dt, g)

	Inner boundary MOC using C+ and C- characteristic curve with unsteady friction

	Parameters

	
	link (object) – current pipe

	H0 (list) – head at previous time step

	V0 (list) – velocity at previous time step

	dt (float) – Time step

	g (float) – Gravity acceleration

	Returns

	
	HP (float) – Head at current pipe inner nodes at current time

	VP (float) – Velocity at current pipe inner nodes at current time

	
tsnet.simulation.solver.valve_node(KL_inv, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, friction, dVdx1, dVdx2, dVdt1, dVdt2)

	Inline valve node MOC calculation

	Parameters

	
	KL_inv (int) – Inverse of the valve loss coefficient at current time

	link1 (object) – Pipe object of C+ charateristics curve

	link2 (object) – Pipe object of C- charateristics curve

	H1 (list) – List of the head of C+ charateristics curve

	V1 (list) – List of the velocity of C+ charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	nn (int) – The index of the calculation node

	s1 (list) – List of signs that represent the direction of the flow
in C+ charateristics curve

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.pump_node(pumpc, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, friction, dVdx1, dVdx2, dVdt1, dVdt2)

	Inline pump node MOC calculation

	Parameters

	
	pumpc (list) – Parameters (a, b,c) to define pump characteristic cure,
so that
.. math:: h_p = a*Q**2 + b*Q + c

	link1 (object) – Pipe object of C+ charateristics curve

	link2 (object) – Pipe object of C- charateristics curve

	H1 (list) – List of the head of C+ charateristics curve

	V1 (list) – List of the velocity of C+ charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	nn (int) – The index of the calculation node

	s1 (list) – List of signs that represent the direction of the flow
in C+ charateristics curve

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.source_pump(pump, link2, H2, V2, dt, g, s2, friction, dVdx2, dVdt2)

	Source Pump boundary MOC calculation

	Parameters

	
	pump (list) – pump[0]: elevation of the reservoir/tank
pump[1]: Parameters (a, b,c) to define pump characteristic cure,
so that
.. math:: h_p = a*Q**2 + b*Q + c

	link2 (object) – Pipe object of C- charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.valve_end(H1, V1, V, nn, a, g, f, D, dt, KD, friction, dVdx2, dVdt2)

	End Valve boundary MOC calculation

	Parameters

	
	H1 (float) – Head of the C+ charateristics curve

	V1 (float) – Velocity of the C+ charateristics curve

	V (float) – Velocity at the valve end at current time

	nn (int) – The index of the calculation node

	a (float) – Wave speed at the valve end

	g (float) – Gravity acceleration

	f (float) – friction factor of the current pipe

	D (float) – diameter of the current pipe

	dt (float) – Time step

	KD (float) – relative roughness height

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.dead_end(linkp, H1, V1, elev, nn, a, g, f, D, dt, KD, friction, dVdx1, dVdt1)

	Dead end boundary MOC calculation with pressure dependant demand

	Parameters

	
	linkp (object) – Current pipe

	H1 (float) – Head of the C+ charateristics curve

	V1 (float) – Velocity of the C+ charateristics curve

	elev (float) – Elevation at the dead end node

	nn (int) – The index of the calculation node

	a (float) – Wave speed at the valve end

	g (float) – Gravity acceleration

	f (float) – friction factor of the current pipe

	D (float) – diameter of the current pipe

	dt (float) – Time step

	KD (float) – relative roughness height

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	
tsnet.simulation.solver.rev_end(H2, V2, H, nn, a, g, f, D, dt, KD, friction, dVdx2, dVdt2)

	Reservoir/ Tank boundary MOC calculation

	Parameters

	
	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	H (float) – Head of the reservoir/tank

	nn (int) – The index of the calculation node

	a (float) – Wave speed at the valve end

	g (float) – Gravity acceleration

	f (float) – friction factor of the current pipe

	D (float) – diameter of the current pipe

	dt (float) – Time step

	KD (float) – relative roughness height

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.add_leakage(emitter_coef, block_per, link1, link2, elev, H1, V1, H2, V2, dt, g, nn, s1, s2, friction, dVdx1=0, dVdx2=0, dVdt1=0, dVdt2=0)

	Leakage Node MOC calculation

	Parameters

	
	emitter_coef (float) – float, optional
Required if leak_loc is defined
The leakage coefficient of the leakage
.. math:: Q_leak = leak_A [m^3/s/(m H20)^(1/2)] * sqrt(H)

	link1 (object) – Pipe object of C+ charateristics curve

	link2 (object) – Pipe object of C- charateristics curve

	H1 (list) – List of the head of C+ charateristics curve

	V1 (list) – List of the velocity of C+ charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	nn (int) – The index of the calculation node

	s1 (list) – List of signs that represent the direction of the flow
in C+ charateristics curve

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.surge_tank(tank, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, friction, dVdx1, dVdx2, dVdt1, dVdt2)

	Surge tank node MOC calculation

	Parameters

	
	tank (int) – tank shape parameters
[As, z, Qs]

As : cross-sectional area of the surge tank
z : water level in the surge tank at previous time step
Qs : water flow into the tank at last time step

	link1 (object) – Pipe object of C+ charateristics curve

	link2 (object) – Pipe object of C- charateristics curve

	H1 (list) – List of the head of C+ charateristics curve

	V1 (list) – List of the velocity of C+ charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	nn (int) – The index of the calculation node

	s1 (list) – List of signs that represent the direction of the flow
in C+ charateristics curve

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

	
tsnet.simulation.solver.air_chamber(tank, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, friction, dVdx1, dVdx2, dVdt1, dVdt2)

	Surge tank node MOC calculation

	Parameters

	
	tank (int) – tank shape parameters
[As, ht, C, z, Qs]

As : cross-sectional area of the surge tank
ht : tank height
C : air constant
z : water level in the surge tank at previous time step
Qs : water flow into the tank at last time step

	link1 (object) – Pipe object of C+ charateristics curve

	link2 (object) – Pipe object of C- charateristics curve

	H1 (list) – List of the head of C+ charateristics curve

	V1 (list) – List of the velocity of C+ charateristics curve

	H2 (list) – List of the head of C- charateristics curve

	V2 (list) – List of the velocity of C- charateristics curve

	dt (float) – Time step

	g (float) – Gravity acceleration

	nn (int) – The index of the calculation node

	s1 (list) – List of signs that represent the direction of the flow
in C+ charateristics curve

	s2 (list) – List of signs that represent the direction of the flow
in C- charateristics curve

	friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’,
by default ‘steady’

	dVdx1 (list) – List of convective instantaneous acceleration on the
C+ characteristic curve

	dVdx2 (list) – List of convective instantaneous acceleration on the
C- characteristic curve

	dVdt1 (list) – List of local instantaneous acceleration on the
C+ characteristic curve

	dVdt2 (list) – List of local instantaneous acceleration on the
C- characteristic curve

Module contents

The tsnet.simulation package contains methods to run transient simulation
using MOC method

tsnet.utils package

Submodules

tsnet.utils.calc_parabola_vertex module

The tsnet.utils.calc_parabola_vertex contains function to
calculate the parameters of a parabola based on the
coordinated of three points on the curve.

	
tsnet.utils.calc_parabola_vertex.calc_parabola_vertex(points)

	Adapted and modifed to get the unknowns for defining a parabola

	Parameters

	points (list) – Three points on the pump characteristics curve.

tsnet.utils.memo module

	
tsnet.utils.memo.decorator(d)

	Make function d a decorator: d wraps a function fn.

	
tsnet.utils.memo.memo(f)

	Decorator that caches the return value for each call to f(args).
Then when called again with same args, we can just look it up.

tsnet.utils.print_time_delta module

	
tsnet.utils.print_time_delta.print_time_delta(seconds)

	

tsnet.utils.valve_curve module

The tsnet.utils.valve_curve contains function to define
valve characteristics curve, gate valve by default.

	
tsnet.utils.valve_curve.valve_curve(s, coeff=None)

	Define valve curve

	Parameters

	
	s (float) – open percentage

	valve (str, optional) – [description], by default ‘Gate’

	Returns

	k – Friction coefficient with given open percentage

	Return type

	float

Module contents

The tsnet.utils package contains helper functions.

Abbreviations

API: Application programming interface

EPA: Environmental Protection Agency

IDE: Integrated development environment

SI: International System of Units

US: United States

MOC: Method of Characteristics

TSNET: Transient Simulation in water Networks

Reference

	WYSS93

	Wylie, E. B., Streeter, V. L., & Suo, L. (1993). Fluid transients in systems (Vol. 1, p. 464). Englewood Cliffs, NJ: Prentice Hall.

	WNTRSi

	Klise, K. A., Hart, D., Moriarty, D., Bynum, M. L., Murray, R., Burkhardt, J., & Haxton, T. (2017). Water network tool for resilience (WNTR) user manual. US Environmental Protection Agency, EPA/600/R-17/264, Cincinnati, OH.

	LAJW99

	Larock, B. E., Jeppson, R. W., & Watters, G. Z. (1999). Hydraulics of pipeline systems. CRC press.

	STWV96

	Street, R. L., Watters, G. Z., & Vennard, J. K. (1996). Elementary fluid mechanics. J. Wiley.

	WOLB05

	Wood, D. J., Lingireddy, S., Boulos, P. F., Karney, B. W., & McPherson, D. L. (2005). Numerical methods for modeling transient flow in distribution systems. Journal‐American Water Works Association, 97(7), 104-115.

	RERS15

	Rezaei, H., Ryan, B., & Stoianov, I. (2015). Pipe failure analysis and impact of dynamic hydraulic conditions in water supply networks. Procedia Engineering, 119, 253-262.

	ASCE17

	ASCE. (2017). 2017 infrastructure report card. Reston, VA: ASCE.

	VaCV11

	van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation. Computing in Science and Engineering, 13, 22-30.

	HaSS08

	Hagberg, A.A., Schult, D.A., and Swart P.J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), August 19-24, Pasadena, CA, USA.

	Hunt07

	Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9(3), 90-95.

	MISI08

	Misiūnas, D. (2008). Failure monitoring and asset condition assessment in water supply systems. Vilnius Gediminas Technical University.

	STWY67

	Streeter, V. L., & Wylie, E. B. (1967). Hydraulic transients (No. BOOK). mcgraw-hill.

	OSBH08

	Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., … & di Pierro, F. (2008). The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. Journal of Water Resources Planning and Management, 134(6), 556-568.

	VIBS06

	Vítkovský, J. P., Bergant, A., Simpson, A. R., & Lambert, M. F. (2006). Systematic evaluation of one-dimensional unsteady friction models in simple pipelines. Journal of Hydraulic Engineering, 132(7), 696-708.

	VABR95

	Vardy, A. E., & Brown, J. M. (1995). Transient, turbulent, smooth pipe friction. Journal of hydraulic research, 33(4), 435-456.

	HAMMER

	Bentley, W. H. Transient Analysis Software.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tsnet	

 	
 	
 tsnet.network	

 	
 	
 tsnet.network.control	

 	
 	
 tsnet.network.discretize	

 	
 	
 tsnet.network.model	

 	
 	
 tsnet.network.topology	

 	
 	
 tsnet.postprocessing	

 	
 	
 tsnet.postprocessing.time_history	

 	
 	
 tsnet.simulation	

 	
 	
 tsnet.simulation.initialize	

 	
 	
 tsnet.simulation.main	

 	
 	
 tsnet.simulation.single	

 	
 	
 tsnet.simulation.solver	

 	
 	
 tsnet.utils	

 	
 	
 tsnet.utils.calc_parabola_vertex	

 	
 	
 tsnet.utils.memo	

 	
 	
 tsnet.utils.print_time_delta	

 	
 	
 tsnet.utils.valve_curve	

Index

 A
 | B
 | C
 | D
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_blockage() (tsnet.network.model.TransientModel method)

 	add_burst() (tsnet.network.model.TransientModel method)

 	add_demand_pulse() (tsnet.network.model.TransientModel method)

 	add_leak() (tsnet.network.model.TransientModel method)

 	
 	add_leakage() (in module tsnet.simulation.solver)

 	add_surge_tank() (tsnet.network.model.TransientModel method)

 	adjust_wavev() (in module tsnet.network.discretize)

 	air_chamber() (in module tsnet.simulation.solver)

B

 	
 	burstsetting() (in module tsnet.network.control)

C

 	
 	cal_Cs() (in module tsnet.simulation.solver)

 	cal_demand_coef() (in module tsnet.simulation.initialize)

 	cal_friction() (in module tsnet.simulation.solver)

 	
 	cal_N() (in module tsnet.network.discretize)

 	cal_roughness_coef() (in module tsnet.simulation.initialize)

 	calc_parabola_vertex() (in module tsnet.utils.calc_parabola_vertex)

D

 	
 	dead_end() (in module tsnet.simulation.solver)

 	decorator() (in module tsnet.utils.memo)

 	demandpulse() (in module tsnet.network.control)

 	
 	detect_pressure_change() (tsnet.network.model.TransientModel method)

 	discretization() (in module tsnet.network.discretize)

 	discretization_N() (in module tsnet.network.discretize)

I

 	
 	Initializer() (in module tsnet.simulation.initialize)

 	inner_node_quasisteady() (in module tsnet.simulation.solver)

 	
 	inner_node_steady() (in module tsnet.simulation.solver)

 	inner_node_unsteady() (in module tsnet.simulation.solver)

 	inner_pipe() (in module tsnet.simulation.single)

L

 	
 	left_boundary() (in module tsnet.simulation.single)

M

 	
 	max_time_step() (in module tsnet.network.discretize)

 	max_time_step_N() (in module tsnet.network.discretize)

 	
 	memo() (in module tsnet.utils.memo)

 	MOCSimulator() (in module tsnet.simulation.main)

P

 	
 	plot_head_history() (in module tsnet.postprocessing.time_history)

 	plot_node_head() (tsnet.network.model.TransientModel method)

 	plot_velocity_history() (in module tsnet.postprocessing.time_history)

 	print_time_delta() (in module tsnet.utils.print_time_delta)

 	pump_node() (in module tsnet.simulation.solver)

 	
 	pump_operation_points() (in module tsnet.simulation.initialize)

 	pump_shut_off() (tsnet.network.model.TransientModel method)

 	pump_start_up() (tsnet.network.model.TransientModel method)

 	pumpclosing() (in module tsnet.network.control)

 	pumpopening() (in module tsnet.network.control)

Q

 	
 	quasi_steady_friction_factor() (in module tsnet.simulation.solver)

R

 	
 	rev_end() (in module tsnet.simulation.solver)

 	
 	Reynold() (in module tsnet.simulation.solver)

 	right_boundary() (in module tsnet.simulation.single)

S

 	
 	set_roughness() (tsnet.network.model.TransientModel method)

 	set_time() (tsnet.network.model.TransientModel method)

 	set_time_N() (tsnet.network.model.TransientModel method)

 	
 	set_wavespeed() (tsnet.network.model.TransientModel method)

 	source_pump() (in module tsnet.simulation.solver)

 	surge_tank() (in module tsnet.simulation.solver)

T

 	
 	topology() (in module tsnet.network.topology)

 	TransientModel (class in tsnet.network.model)

 	tsnet (module)

 	tsnet.network (module)

 	tsnet.network.control (module)

 	tsnet.network.discretize (module)

 	tsnet.network.model (module)

 	tsnet.network.topology (module)

 	tsnet.postprocessing (module)

 	tsnet.postprocessing.time_history (module)

 	
 	tsnet.simulation (module)

 	tsnet.simulation.initialize (module)

 	tsnet.simulation.main (module)

 	tsnet.simulation.single (module)

 	tsnet.simulation.solver (module)

 	tsnet.utils (module)

 	tsnet.utils.calc_parabola_vertex (module)

 	tsnet.utils.memo (module)

 	tsnet.utils.print_time_delta (module)

 	tsnet.utils.valve_curve (module)

U

 	
 	unsteady_friction() (in module tsnet.simulation.solver)

V

 	
 	valve_closure() (tsnet.network.model.TransientModel method)

 	valve_curve() (in module tsnet.utils.valve_curve)

 	valve_end() (in module tsnet.simulation.solver)

 	
 	valve_node() (in module tsnet.simulation.solver)

 	valve_opening() (tsnet.network.model.TransientModel method)

 	valveclosing() (in module tsnet.network.control)

 	valveopening() (in module tsnet.network.control)

Transient Simulation in water Networks (TSNet)

[image: highlight]

TSNet is a Python package designed to perform transient simulation in water
distribution networks. The software includes capability to:

	Create transient models based on EPANET INP files

	Operate valves and pumps

	Add disruptive events including pipe bursts and leaks

	Model open and closed surge tanks

	Choose between steady,quasi-steady, and unsteady friction models

	Perform transient simulation using Method of characteristics (MOC) techniques

	Visualize results

Indices and tables

	Index

	Module Index

	Search Page

tsnet

	tsnet package
	Subpackages
	tsnet.network package
	Submodules

	tsnet.network.control module

	tsnet.network.discretize module

	tsnet.network.model module

	tsnet.network.topology module

	Module contents

	tsnet.postprocessing package
	Submodules

	tsnet.postprocessing.time_history module

	Module contents

	tsnet.simulation package
	Submodules

	tsnet.simulation.initialize module

	tsnet.simulation.main module

	tsnet.simulation.single module

	tsnet.simulation.solver module

	Module contents

	tsnet.utils package
	Submodules

	tsnet.utils.calc_parabola_vertex module

	tsnet.utils.memo module

	tsnet.utils.print_time_delta module

	tsnet.utils.valve_curve module

	Module contents

	Module contents

 _static/up-pressed.png

_static/up.png

_static/plus.png

_images/DemandMultiplier.png
Demand pulse multiplier

s

ts+tp

Time [s]

ts+tc

_images/MOC_grid.png
4 H7 H! H} H
_ Vlt V2t VSt Véf
Ct C~
At
Ht—l Ht—l
N V7]f—1 V%_l
1 4

Compt.unitl Compt.unit2
|

I, NV \
N N 7]

Aa:l = alAt Aaig = agAt

_images/MOC_grid_net.png
Juntion 1

Juntion 2

Pipe 1 Pipe 2
O O
t+ 4Ho H; Hg Hs Hy Hs He,	
Vo Vi V2, V3 Va4 Vs Ve	
to + At	
to . .	
A L1 /4	
C o S ® ® S	
L0 L1 L2 I3 L4 L5 L6	
Iz NV N V. NV NV \J	
Aa:l	Aa:l
- /

Comp\t./ units

Q boundary node

‘ inner node

_images/MOC_grid_unsteady.png
¢ t t t
+ o o
CT O
At
Ht_l Ht—l
1 1|\~ T T== ~le—-—7"7"" " T T == —1
t — Vl /fg\\ _____ /‘,2 - J}‘\Vél
| \ 8V + 8_V_ / \
[\ ! |
| ' ! |
| 10V + —av R |
| 'Ot t !
| ' : '
v | ! N
V]! -
V! /
\|/ /
t— 2 . ’
\
I 4

Compt.unitl

Compt.unit2

NV

\

I,
I<

Aa';l = al At

4D

AQ’JQ = a9 At

q

nav.xhtml

 Table of Contents

 		
 Welcome to TSNet’s documentation!

 		
 Introduction to TSNet

 		
 Overview

 		
 Features

 		
 Version

 		
 Contact

 		
 Disclaimer

 		
 Cite TSNet

 		
 License

 		
 Installation

 		
 Setup Python Environment

 		
 Stable Release (for users)

 		
 From Sources (for developers)

 		
 Dependencies

 		
 Software Conventions and Limitations

 		
 Units

 		
 Modelling Assumptions and Limitations

 		
 Getting Started

 		
 Simple example

 		
 Transient Modeling Framework

 		
 Transient Model

 		
 Initial Conditions

 		
 Transient Simulation

 		
 Governing Equations

 		
 Choice of Time Step

 		
 Numerical Scheme

 		
 Boundary Conditions

 		
 Simulation Results

 		
 Results Structure

 		
 Time Step and Time Stamps

 		
 Results Retrieval

 		
 Runtime and Progress

 		
 Example Applications

 		
 Example 1 - End-valve closure

 		
 Example 2 - Pump operations

 		
 Example 3 - Burst and leak

 		
 Comparison with Hammer

 		
 Tnet 0

 		
 Tnet 3

 		
 Pump shut-down

 		
 Burst event

 		
 Valve closure

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2019-08-15)

 		
 0.1.1 (2019-09-21)

 		
 0.1.2 (2020-01-20)

 		
 0.2.0 (2020-4-23)

 		
 0.2.1 (2020-09-09)

 		
 0.2.2 (2020-09-24)

 		
 0.2.3 (2021-11-12)

 		
 0.2.4 (2022-06-17)

 		
 0.3.0 (2023-02-22)

 		
 API documentation

 		
 Subpackages

 		
 tsnet.network package

 		
 tsnet.postprocessing package

 		
 tsnet.simulation package

 		
 tsnet.utils package

 		
 Module contents

 		
 Abbreviations

 		
 Reference

_images/highlight.png
Head change [m]

JUNCTION-16

0.0 25 5.0

7.5

Head change [m]

Head change [m]

—— JUNCTION-16
—— JUNCTION-20
—— JUNCTION-30
—— JUNCTION-45
—— JUNCTION-90

5.0

75 10.0 125 15.0 175
Time [s]
JUNCTION-2

VALVE-1

JUNCTION-90

—— JUNCTION-16
—— JUNCTION-20
—— JUNCTION-30
—— JUNCTION-45
—— JUNCTION-90
100 125 150 175
Time [s]
P ST
|
Y
JUNCTION-73
20| — JUNCTION-16
—— JUNCTION-20
—— JUNCTION-30
101 — JUNCTION-45
—— JUNCTION-90
0!
-10
-20
-30

0.0 25 5.0 7.5 10.0 12.5 15.0
Time [s]

17.5

JUNCTION-30

275 — Burst

== Burst w/ leak
—— Valve closure
== Valve closure w/ leak
=—— Pump shut-off

0.0 25 5.0 7.5 100 125 15.0 175
Time [s]

o Junction

i S | Scenario

_images/tnet0_calibration.png
Flowrate [m3/s]

(a) (b)

760.0 -
0.05 ¢ — TSNet —— TSNet
-&- Hammer -& - Hammer
‘ T
0.04 | \ :
®
®) § J ®
£ 75254 [I 1
0.03 - O 3 |
ool |
® :5 750.0 ¢ |
= ¢
0.02 - n
U 147.5 -
al ® ®
1 745.0 - 1 |
0.01 -]) | [
(
742.5 - ‘
| | I | | 7400] | | I | |
0 10 20 30 40 50 0 10 20 30 40 50

Time [s] Time [s]

_images/MOC_time_example.png
(a)

(b

L =940m Lo = 60m

L Pipe 1 ol

L3 = 2000m

L3z = 2000m Ligo = 1000m

Pipe 3

N N

Pipe 2

N Iz
IS

Pipe 1&2

NV

Pipe 3

\J

1

a1 = ag = agz = 1000m/s

/||\

1

_images/chart.png
Create transient model

A

e’

Y

I EPANET INP file

Set up transient events

Y

Valve closure and/or opening
Pump shut-off and/or start-up

Bursts

Demand pulse

Define protection devices

—/
A

Y

Calculate initial conditions

Open/closed surge tanks |

]4—‘ WNTR simulator with defined leaks

Y

Specity friction model

o Steady

—/
A

Y

Run transient simulation

A

e (Quasi-steady

e Unsteady

;d

Y

Get results

I MOC simulator

e Head

-~ Flowrate

;4

Velocity

Discharge

_images/tnet1_pipe.png
Flowrate of Pipe P2

b
W

W
Wi

Aw'hvv
\\\M
<
=
=
\M“\
<
/lﬂA#
P
Lol
—
M
== | i
= i3
— ——=a4&
== I

00000000
00000000
uuuuuuuu

oooooooo

e [s]

_images/tnet2_node.png
Pressure Head [m]

52

50

a8

46

a2

Pressure Head at Node JUNCTION-105

VY “\/\//\‘\A

10 20 30
Time [s]

50

_images/tnet0_network.png
Reservoir P- N-T P-2 VALE
F > @ >)<

[, =1200m;d, = 600mm [, = 2400m; d, = 1200mm

_images/tnet1_node.png
Pressure Head [m]

220

200

180

160

140

120

100

Pressure Head at Node 2

10

20

30
Time [s]

40

50

_images/tnet2_pipe.png
Velocity [m/s]

075

0.70

0.65

0.60

055

050

0.45

0.40

Velocity of Pipe PIPE-109

start Node |
—— End Node

10

Time [s]

50

_images/tnet3_burst.png
Burst discharge [m*~3/s]

Burst discharge at Node JUNCTION-20

0.08

0.06

0.04

0.02

0.00 1

0.0

2.5

5.0

75 10.0 125
Time [s]

15.0

17.5

_images/tnet3_burst_hammer.png
Head change [m]

10 -

10

_20 -

_30 -

_40 -

= |UNCTION-16
e |UNCTION-20
e |UNCTION-30
== |UNCTION-45
e |UNCTION-90

0.0

2.5

5.0

7.5

10.0
Time [S]

12.5

15.0 17.5

_images/tnet3_pipe.png
Velocity [m/s]

Velocity of Pipe LINK-40

01 —— Start Node |
\ —— End Node
- \—\\
-0.3
o5 N /
—0.6
0.0 25 5.0 75 10.0 125 15.0 175

Time [s]

_images/tnet3_pump_hammer_002.png
Head change [m]

30 -

20 -

10 -

10

_20 _

30

—— JUNCTION-16
—— JUNCTION-20
—— JUNCTION-30
—— JUNCTION-45
—— JUNCTION-90

0.0

25 5.0

7.5

10.0
Time [S]

12.5

15.0

17.5

_images/tnet3_leak.png
Leak discharge [m~3/s]

Leak discharge at Node JUNCTION-22

0.087

0.086

0.085

0.084

0.083

0.082

0.081

0.080

00 25 50 75 10.0 125 15.0 175
Time [s]

_images/tnet3_multi.png
Head [m]

Head on Junctions

360
340
320

—— JUNCTION-8
300 1 — JUNCTION-16

—— JUNCTION-45
2801 JUNCTION-90

. —
260 %ﬂ
240
00 25 5.0 75 100 125 15.0 175

Time [s]

_images/valve_opening.png
Valve opening ratio

05

°
=

°
w

°
o

°

0.0

Valve opening curve

Time [s]

_images/wavespeed.png
0.25 A

o
N
=]

Time step [s]
5 &

0.05 A

0.00

\ 2 segments on the critical pipe

r0.20

r0.15

F0.10 ©

[0.05

[0.00

5 10 15 0 25 S
Number of segments in the critical pipe

_images/tnet3_valve_hammer.png
Head change [m]

(a)

m JUNCTION-16

1 === JUNCTION-20

m JUNCTION-30
== JUNCTION-45
e JUNCTION-90

.I"”
o .

2.5 5.0

7.5 10.0 12.5 15.0 17.5
Time [S]

(b)

= |UNCTION-16
e |UNCTION-20
e |UNCTION-30
= |UNCTION-45
e |UNCTION-90

0.0

2.5

5.0

7.5

10.0
Time [s]

12.5 15.0 17.5

_images/valve_closure.png
10

° ° °
3 ® ©

Valve opening ratio

°
S

05

Valve closure curve

— m=1
— m=2

Time [s]

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

