
TSNet Documentation
Release 0.2.2

Lu Xing, Lina Sela

Sep 21, 2023

Contents:

1 Introduction to TSNet 1
1.1 Overview . 1
1.2 Features . 2
1.3 Version . 2
1.4 Contact . 2
1.5 Disclaimer . 2
1.6 Cite TSNet . 2
1.7 License . 3

2 Installation 5
2.1 Setup Python Environment . 5
2.2 Stable Release (for users) . 5
2.3 From Sources (for developers) . 5
2.4 Dependencies . 6

3 Software Conventions and Limitations 7
3.1 Units . 7
3.2 Modelling Assumptions and Limitations . 7

4 Getting Started 9
4.1 Simple example . 9

5 Transient Modeling Framework 11
5.1 Transient Model . 11
5.2 Initial Conditions . 11
5.3 Transient Simulation . 13

6 Simulation Results 27
6.1 Results Structure . 27
6.2 Time Step and Time Stamps . 28
6.3 Results Retrieval . 28
6.4 Runtime and Progress . 29

7 Example Applications 31
7.1 Example 1 - End-valve closure . 31
7.2 Example 2 - Pump operations . 32
7.3 Example 3 - Burst and leak . 36

i

8 Comparison with Hammer 41
8.1 Tnet 0 . 41
8.2 Tnet 3 . 41

9 Contributing 45
9.1 Types of Contributions . 45
9.2 Get Started! . 46
9.3 Pull Request Guidelines . 47
9.4 Tips . 47
9.5 Deploying . 47

10 Credits 49
10.1 Development Lead . 49
10.2 Contributors . 49

11 History 51
11.1 0.1.0 (2019-08-15) . 51
11.2 0.1.1 (2019-09-21) . 51
11.3 0.1.2 (2020-01-20) . 51
11.4 0.2.0 (2020-4-23) . 51
11.5 0.2.1 (2020-09-09) . 51
11.6 0.2.2 (2020-09-24) . 52
11.7 0.2.3 (2021-11-12) . 52
11.8 0.2.4 (2022-06-17) . 52
11.9 0.3.0 (2023-02-22) . 52

12 tsnet package 53
12.1 Subpackages . 53
12.2 Module contents . 73

13 Abbreviations 75

14 Reference 77

15 Indices and tables 79

Bibliography 81

Python Module Index 83

Index 85

ii

CHAPTER 1

Introduction to TSNet

TSNet performs transient simulation in water networks using Method of Characteristics (MOC).

• Free software: MIT license

• Github: https://github.com/glorialulu/TSNet.git

• Documentation: https://tsnet.readthedocs.io.

1.1 Overview

Hydraulic transients in water distribution networks (WDNs), typically induced by pipe bursts, valve operations, and
pump operations, can disturb the steady-state flow conditions by introducing extreme pressure variability and impos-
ing abrupt internal pressure force onto the pipeline systems [WOLB05]. These disturbances have been identified as
one of the major contributing factors in the many pipe deterioration and catastrophic failure in WDNs [RERS15],
thereby wasting a significant amount of treated water and creating unexpected possibilities of contamination intrusion
[ASCE17]. Consequently, transient simulation, as a prominent approach to understand and predict the behavior of
hydraulic transients, has become an essential requirement for ensuring the distribution safety and improving the ef-
ficiency in the process of design and operation of WDNs. In addition to improving design and operation of WDNs,
various other transient-based applications, such as network calibration, leak detection, sensor placement, and condition
assessment, has also enhanced the popularity and necessity of transient simulation

Acknowledgedly, a number of commercial software for transient simulation in water distribution systems is available
in the market; however, the use of these software for research purposes is limited. The major restriction is due
to the fact that the programs are packed as black boxes, and the source codes are not visible, thus prohibiting any
changes, including modification of existing and implementation of new elements, in the source codes. Additionally,
the commercial software is designed to perform only single transient simulations and do not have the capabilities to
automate or run multiple transient simulations. Users are required to modify the boundary conditions using the GUI,
perform the simulation, and manually record the hydraulic responses in the various conditions, which significantly
complicated the research process.

There is a clear gap that currently available simulation software are not suitable for many research applications beyond
the conventional design purposes. Hence, the motivation of this work is two-fold:

1

https://github.com/glorialulu/TSNet.git
https://tsnet.readthedocs.io

TSNet Documentation, Release 0.2.2

1. Provide users with open source and freely available python code and package for simulating transients in water
distribution systems that can be integrated with other case specific applications, e.g. sensor placement and event
detection; and

2. Encourage users and developers to further develop and extend the transient model.

1.2 Features

TSNet is a Python package designed to perform transient simulation in water distribution networks. The software
includes capability to:

• Create transient models based on EPANET INP files

• Operating valves and pumps

• Add disruptive events including pipe bursts and leakages

• Choose between steady,quasi-steady, and unsteady friction models

• Perform transient simulation using Method of characteristics (MOC) techniques

• Visualize results

For more information, go to https://tsnet.readthedocs.io.

1.3 Version

TSNet is a ongoing research project in the University of Texas at Austin. The current version is 0.2.2, which is still a
pre-release.

1.4 Contact

• Lu Xing, the University of Texas at Austin, xinglu@utexas.edu

• Lina Sela, the University of Texas at Austin, linasela@utexas.edu

1.5 Disclaimer

No warranty, expressed or implied, is made as to the correctness of the results or the suitability of the application.

1.6 Cite TSNet

To cite TSNet, use one of the following references:

Xing, Lu, and Lina Sela. “Transient simulations in water distribution networks: TSNet python package.” Advances in
Engineering Software 149 (2020): 102884.

2 Chapter 1. Introduction to TSNet

https://tsnet.readthedocs.io
mailto:xinglu@utexas.edu
mailto:linasela@utexas.edu

TSNet Documentation, Release 0.2.2

1.7 License

TSNet is released under the MIT license. See the LICENSE.txt file.

1.7. License 3

TSNet Documentation, Release 0.2.2

4 Chapter 1. Introduction to TSNet

CHAPTER 2

Installation

2.1 Setup Python Environment

TSNet is tested against Python versions 3.5, 3.6, and 3.7. It can be installed on Windows, Linux, and Mac OS X
operating systems. Python distributions, such as Anaconda, are recommended to manage the Python environment
as they already contain (or easily support installation of) many Python packages (e.g. SciPy, NumPy, pandas, pip,
matplotlib, etc.) that are used in the TSNet package. For more information on Python package dependencies, see
Dependencies.

2.2 Stable Release (for users)

To install TSNet, run this command in your terminal:

$ pip install tsnet

This is the preferred method to install tsnet, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.3 From Sources (for developers)

The sources for TSNet can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/glorialulu/tsnet

Or download the tarball:

$ curl -OL https://github.com/glorialulu/tsnet/tarball/master

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/glorialulu/tsnet
https://github.com/glorialulu/tsnet/tarball/master

TSNet Documentation, Release 0.2.2

Once you have a copy of the source, you can install it with:

$ python setup.py install

2.4 Dependencies

Requirements for TSNet include Python (3.5, 3.6, or 3.7) along with several Python packages. The following Python
packages are required:

1. Numpy [VaCV11]: the fundamental package needed for scientific computing with Python included in Anaconda
distribution http://www.numpy.org/

2. Matplotlib [Hunt07]: Python 2D plotting library included in Anaconda distribution http://matplotlib.org/

3. NetworkX [HaSS08]: Network creation and manipulation engine, install on a python-enabled command line
with pip install wntr https://networkx.github.io/

4. WNTR [WNTRSi]: Water Network Tool for Resilience install on a python-enabled command line with pip
install wntr http://wntr.readthedocs.io

5. pytest: Unit Tests engine install on a python-enabled command line with pip install -U pytest https://docs.pytest.
org/en/latest/

6 Chapter 2. Installation

http://www.numpy.org/
http://matplotlib.org/
https://networkx.github.io/
http://wntr.readthedocs.io
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/

CHAPTER 3

Software Conventions and Limitations

3.1 Units

All data in TSNet is stored in the following International System (SI) units:

• Length = 𝑚

• Diameter = 𝑚

• Water pressure = 𝑚 (this assumes a fluid density of 1000 𝑘𝑔/𝑚3)

• Elevation = 𝑚

• Mass = 𝑘𝑔

• Time = 𝑠

• Demand = 𝑚3/𝑠

• Velocity = 𝑚/𝑠

• Acceleration = 𝑔 (1 𝑔 = 9.8 𝑚/𝑠2)

• Volume = 𝑚3

If the unit system specified in .inp file is US units, it will be converted to SI unit in the simulation process. When
setting up analysis in TSNet, all input values should be specified in SI units. All simulation results are also stored in
SI units.

3.2 Modelling Assumptions and Limitations

TSNet is constantly under development. Current software limitations are as follows:

• Demands on the start and end nodes of pumps and valves are not supported. If demands are defined on these
nodes in the .inp file, they will be ignored in transient simulation, and the simulation results may not be accurate
due to discrepancies between the initial conditions and the first step in transient simulation. Warnings will be
printed.

7

TSNet Documentation, Release 0.2.2

• Multi-branch junctions on the start and end nodes of pumps and valves are not supported. It is assumed that
valves and pumps are connected by pipes in series.

• During transient simulation, demands are pressure dependent .

• Pipe Friction coefficients are converted to Darcy-Weisbach coefficients based on initial conditions.

• Pipe bursts and leaks occur only on the nodes.

• Transient simulation relies on a feasible steady state solution; hence, it is essential to verify that the steady state
simulation succeeds without errors.

8 Chapter 3. Software Conventions and Limitations

CHAPTER 4

Getting Started

To use tsnet in a project, open a Python console and import the package:

import tsnet

4.1 Simple example

A simple example, Tnet1_valve_closure.py is included in the examples folder. This example demonstrates how to:

• Import tsnet

• Generate a transient model

• Set wave speed

• Set time step and simulation period

• Perform initial condition calculation

• Define valve closure rule

• Run transient simulation and save results to .obj file

• Plot simulation results

Open an example network and create a transient model
tm = tsnet.network.TransientModel('/Users/luxing/Code/TSNet/examples/networks/Tnet1.
→˓inp')

Set wavespeed
tm.set_wavespeed(1200.) # m/s

Set time options
tf = 20 # simulation period [s]
tm.set_time(tf)

(continues on next page)

9

TSNet Documentation, Release 0.2.2

(continued from previous page)

Set valve closure
ts = 5 # valve closure start time [s]
tc = 1 # valve closure period [s]
se = 0 # end open percentage [s]
m = 2 # closure constant [dimensionless]
tm.valve_closure('VALVE',[tc,ts,se,m])

Initialize steady state simulation
t0=0
tm = tsnet.simulation.Initializer(tm,t0)

Transient simulation
tm = tsnet.simulation.MOCSimulator(tm)

report results
node = ['N2','N3']
tm.plot_node_head(node)

Three additional EPANET INP files and example files are also included in the TSNet examples repository in the
examples folder. Example networks range from a simple 8-node network to a 126-node network.

10 Chapter 4. Getting Started

CHAPTER 5

Transient Modeling Framework

The framework of performing transient simulation using TSNet is shown in Figure 5.1 The main steps of transient
modelling and simulation in TSNet are described in subsequent sections.

5.1 Transient Model

The transient model inherits the WNTR water network model [WNTRSi], which includes junctions, tanks, reservoirs,
pipes, pumps, valves, patterns, curves, controls, sources, simulation options, and node coordinates. It can be built
directly from an EPANet INP file. Sections of EPANet INP file that are not compatible with WNTR are described in
[WNTRSi].

Compared with WNTR water network model, TSNet transient model adds the features designed specifically for tran-
sient simulation, such as spatial discretization, temporal discretization, valve operation rules, pump operation rules,
burst opening rules, surge tanks, and storage of time history results. For more information on the water network model,
see TransientModel in the API documentation.

A transient model can be created directly from an EPANET INP file. The following example build a transient model.

inp_file = 'examples/networks/Tnet1.inp'
tm = tsnet.network.TransientModel(inp_file)

5.2 Initial Conditions

TSNet employed WNTR [WNTRSi] for simulating the steady state in the network to establish the initial conditions
for the upcoming transient simulations.

WNTRSimulators can be used to run demand-driven (DD) or pressure-dependent demand (PDD) hydraulics simula-
tions, with the capacity of simulating leaks. The default simulation engine is DD. An initial condition simulation can
be run using the following code:

11

TSNet Documentation, Release 0.2.2

Figure 5.1: Flowchart of transient simulation in TSNet

12 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

t0 = 0. # initialize the simulation at 0 [s]
engine = 'DD' # demand driven simulator
tm = tsnet.simulation.Initializer(tm, t0, engine)

𝑡0 stands for the time when the initial condition will be calculated. More information on the initializer can be found in
the API documentation, under Initializer.

5.3 Transient Simulation

After the initial conditions are obtained, TSNet adopts the Method of Characteristics (MOC) for solving governing
transient flow equations. A transient simulation can be run using the following code:

results_obj = 'Tnet1' # name of the object for saving simulation results
tm = tsnet.simulation.MOCSimulator(tm, results_obj)

The results will be returned to the transient model (tm) object, and then stored in the ‘Tnet1.obj’ file for the easiness
of retrieval.

In the following sections, an overview of the solution approaches and boundary conditions is presented, based on the
following literature [LAJW99] , [MISI08], [WYSS93].

5.3.1 Governing Equations

Mass and Momentum Conservation

The transient flow is governed by the mass and momentum conservation equation [WYSS93]:

𝜕𝐻

𝜕𝑡
+

𝑎2

𝑔

𝜕𝑉

𝜕𝑥
− 𝑔𝑉 sin𝛼 = 0

1

𝑔

𝜕𝑉

𝜕𝑡
+

𝜕𝐻

𝜕𝑥
+ ℎ𝑓 = 0

where 𝐻 is the head, 𝑉 is the flow velocity in the pipe, 𝑡 is time, 𝑎 is the wave speed, 𝑔 is the gravity acceleration, 𝛼
is the pipe slope, and ℎ𝑓 represents the head loss per unit length due to friction.

Method of Characteristics (MOC)

The Method of Characteristics (MOC) method is used to solve the system of governing equations above. The essence
of MOC is to transform the set of partial differential equations to an equivalent set of ordinary differential equations
that apply along specific lines, i.e., characteristics lines (C+ and C-), as shown below [LAJW99]:

𝐶+ :
𝑑𝑉

𝑑𝑡
+

𝑔

𝑎

𝑑𝐻

𝑑𝑡
+ 𝑔ℎ𝑓 − 𝑔

𝑎
𝑉 sin𝛼 = 0 along

𝑑𝑥

𝑑𝑡
= 𝑎

𝐶− :
𝑑𝑉

𝑑𝑡
− 𝑔

𝑎

𝑑𝐻

𝑑𝑡
+ 𝑔ℎ𝑓 − 𝑔

𝑎
𝑉 sin𝛼 = 0 along

𝑑𝑥

𝑑𝑡
= −𝑎

Headloss in Pipes

5.3. Transient Simulation 13

TSNet Documentation, Release 0.2.2

Steady/ quasi-steady friction model

TSNet adopts Darcy-Weisbach equation to compute head loss, regardless of the friction method defined in the
EPANET .inp file. This package computes Darcy-Weisbach coefficients (𝑓) based on the head loss per unit length
(ℎ𝑓 0) and flow velocity (𝑉0) in initial condition, using the following equation:

𝑓 =
ℎ𝑓 0

𝑉 2
0 /2𝑔𝐷

where 𝐷 is the pipe diameter, and 𝑔 is gravity acceleration.

Subsequently, in transient simulation the headloss (ℎ𝑓) is calculated based on the following equation:

ℎ𝑓 = 𝑓
𝑉 2

2𝑔𝐷

Unsteady friction model

In addition to the steady friction model, TSNet includes the quasi-steady and the unsteady friction models. The head
loss term (ℎ𝑓) can be expressed as a sum of steady/quasi-steady part (ℎ𝑓 𝑠) and unsteady part (ℎ𝑓𝑢), i.e., ℎ𝑓 = ℎ𝑓 𝑠 +
ℎ𝑓𝑢. TSNet incorporates the instantaneous acceleration-based model [VIBS06] to calcualte the unsteady friction:

ℎ𝑓𝑢 =
𝑘𝑢
2𝑔

(︂
𝜕𝑉

𝜕𝑡
+ 𝑎 · sign(𝑉)

⃒⃒⃒⃒
𝜕𝑉

𝜕𝑥

⃒⃒⃒⃒)︂
where ℎ𝑓𝑢 is the head loss per unit length due to unsteady friction, 𝜕𝑉

𝜕𝑡 is the local instantaneous acceleration, 𝜕𝑉
𝜕𝑥 is the

convective instantaneous acceleration, and 𝑘𝑢 is Brunone’s friction coefficient, which can be analytically determined
using Vardy’s sheer decay coefficient (𝐶*) [VABR95]:

𝑘𝑢 =
𝐶*

2

𝐶* =

{︂
0.00476 laminar flow (𝑅𝑒 ≤ 2000)

7.41
𝑅𝑒log (14.3/𝑅𝑒0.05)

turbulent flow (𝑅𝑒 > 2000)

TSNet allows the user to choose the friction model using TSNet API simply by specifying the friction model to be
used in MOCSimulator. The friction argument can take three values: ‘steady’, ‘quasi-steady’, and ‘unsteady’:

results_obj = 'Tnet3' # name of the object for saving simulation results
friction = 'unsteady' # or "steady" or "quasi-steady", by default "steady"
tm = tsnet.simulation.MOCSimulator(tm, results_obj, friction)

Pressure-driven Demand

During the transient simulation in TSNet, the demands are treated as pressure-dependent discharge; thus, the actual
demands will vary from the demands defined in the INP file. The actual demands (𝑑𝑎𝑐𝑡𝑢𝑎𝑙) are modeled based on the
instantaneous pressure head at the node and the demand discharge coefficients, using the following equation:

𝑑𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑘
√︀
𝐻𝑝

where 𝐻𝑝 is the pressure head and 𝑘 is the demand discharge coefficient, which is calculated from the initial demand
(𝑑0) and pressure head (𝐻𝑝0):

𝑘 =
𝑑0√︀
𝐻𝑝0

It should be noted that if the pressure head is negative, the demand flow will be treated zero, assuming that a backflow
preventer is installed on each node.

14 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

5.3.2 Choice of Time Step

The determination of time step in MOC is not a trivial task. There are two constraints that have to be satisfied
simultaneously:

1. The Courant’s criterion has to be satisfied for each pipe, indicating the maximum time step allowed in the
network transient analysis will be:

∆𝑡 6 min

(︂
𝐿𝑖

𝑁𝑖𝑎𝑖

)︂
, 𝑖 = 1, 2, ..., 𝑛𝑝

2. The time step has to be the same for all the pipes in the network, therefore restricting the wave travel time
𝐿𝑖

𝑁𝑖𝑎𝑖
to be the same for any computational unit in the network. Nevertheless, this is not realistic in a real

network, because different pipe lengths and wave speeds usually cause different wave travel times. Moreover,
the number of sections in the 𝑖𝑡ℎ pipe (𝑁𝑖) has to be an integer due to the grid configuration in MOC; however,
the combination of time step and pipe length is likely to produce non-integer value of 𝑁𝑖, which then requires
further adjustment.

This package adopted the wave speed adjustment scheme [WYSS93] to make sure the two criterion stated above are
satisfied.

To begin with, the maximum allowed time step (∆𝑡𝑚𝑎𝑥) is calculated, assuming that there are two computational units
on the critical pipe (i.e., the pipe that results in the smallest travel time, which depends on the length and the wave
speed for that pipe):

∆𝑡𝑚𝑎𝑥 = min

(︂
𝐿𝑖

2𝑎𝑖

)︂
, 𝑖 = 1, 2, ..., 𝑛𝑝

After setting the initial time step, the following adjustments will be performed. Firstly, the 𝑖𝑡ℎ pipes (𝑝𝑖) with length
(𝐿𝑖) and wave speed (𝑎𝑖) will be discretized into (𝑁𝑖) segments:

𝑁𝑖 = round
(︂

𝐿𝑖

𝑎𝑖∆𝑡𝑚𝑎𝑥

)︂
, 𝑖 = 1, 2, . . . , 𝑛𝑝

Furthermore, the discrepancies introduced by the rounding of 𝑁𝑖 can be compensated by correcting the wave speed
(𝑎𝑖).

∆𝑡 = argmin𝜑,Δ𝑡

{︃
𝑛𝑝∑︁
𝑖=1

𝜑𝑖
2
⃒⃒

∆𝑡 =
𝐿𝑖

𝑎𝑖(1 ± 𝜑𝑖)𝑁𝑖
𝑖 = 1, 2, . . . , 𝑛𝑝

}︃

Least squares approximation is then used to determine ∆𝑡 such that the sum of squares of the wave speed adjust-
ments (

∑︀
𝜑𝑖

2) is minimized [MISI08]. Ultimately, an adjusted ∆𝑡 can be determined and then used in the transient
simulation.

It should be noted that even if the user defined time step satisfied the Courant’s criterion, it will still be adjusted.

If the user defined time step is greater than ∆𝑡𝑚𝑎𝑥, a fatal error will be raised and the program will be killed; if not,
the user defined value will be used as the initial guess for the upcoming adjustment.

dt = 0.1 # time step [s], if not given, use the maximum allowed dt
tf = 60 # simulation period [s]
tm.set_time(tf,dt)

The determination of time step is not straightforward, especially in large networks. Thus, we allow the user to ignore
the time step setting, in which case ∆𝑡𝑚𝑎𝑥 will be used as the initial guess for the upcoming adjustment.

Alternatively, the user can also specify the number of segments on the critical pipe:

5.3. Transient Simulation 15

TSNet Documentation, Release 0.2.2

N = 3 # number of computational units on the critical pipe, default 2.
tf = 60 # simulation period [s]
tm.set_time_N(tf,N)

Example

We use a small network, shown in Figure 5.2, to illustrate how time step is determined as well as the benefits and
drawbacks of combining or removing small pipes. Figure 5.2 (a) shows a network of three pipes with length of 940m,
60m, and 2000m, respectively. The wave speed for all the pipes is equal to 1000m/s. The procedure for determine the
time step is as follows:

• Calculate the maximum time step (∆𝑡𝑚𝑎𝑥) allowed by Courant’s criterion, assuming that there are two com-
putational units on the critical pipe (i.e., the pipe that results in the smallest travel time, which depends on the
length and the wave speed for that pipe), i.e., for pipe 2 𝑁2 = 2.}

∆𝑡𝑚𝑎𝑥 = min

(︂
𝐿𝑖

2𝑎𝑖

)︂
=

(︂
𝐿2

𝑁2𝑎2

)︂
=

60

2 × 1000
= 0.03𝑠

• Compute the required number of computational units for all other pipes, i.e, 𝑁1 for pipe 1 and 𝑁3 for pipe
3, using ∆𝑡𝑚𝑎𝑥 as the time step. Since the number of computational units on each pipe has to be integer, the
numbers are rounded to the closest integer, thus introducing discrepancies in the time step of different pipes.

𝑁1 = round
(︂

𝐿1

𝑎1∆𝑡𝑚𝑎𝑥

)︂
=

940

1000 × 0.03
= 31

𝑁3 = round
(︂

𝐿3

𝑎3∆𝑡𝑚𝑎𝑥

)︂
=

2000

1000 × 0.03
= 67

With these number of computational units, the time steps for each pipe become:

∆𝑡1 =
𝐿1

𝑁1𝑎1
= 0.03032𝑠

∆𝑡3 =
𝐿3

𝑁3𝑎3
= 0.02985𝑠

However, all the pipes have to have the same time step for marching forward; hence, we need to adjust the wave
speed to match the time step for all pipes.

∆𝑡 =
𝐿𝑖

𝑎𝑎𝑑𝑗𝑖 𝑁𝑖

• Compensate the discrepancies introduced by rounding number of computation units through adjusting wave
speed from 𝑎𝑖 to 𝑎𝑎𝑑𝑗𝑖 = 𝑎𝑖(1 + 𝜑𝑖). The sum of squared adjustments (

∑︀
𝜑𝑖

2) is minimized to obtain the
minimal overall adjustment. In this example, the wave speeds of the three pipes are adjusted by 𝜑1 = 0.877𝜑2 =
−0.196%, 𝜑3 = 0.693%, respectively.

• Finally, the time step can be calculated based on the number of computational units and the adjusted wave speed
of each one of three pipes that now share the same time step:

∆𝑡 =
𝐿𝑖

𝑎𝑖(1 ± 𝜑𝑖)𝑁𝑖
= 0.03006𝑠

Noticeably, the maximum allowed time step for this network is fairly small. Meanwhile, the total number of segments
(31 + 2 + 67 = 100) is relatively large; thus, in order to conduct a transient simulation of 10𝑠, the overall number
of computation nodes in x-t plane will be 10/0.03006 × 100 = 33267. The computation efforts can be significantly

16 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

Figure 5.2: Example network for determining the time step: (a) before combing pipes; (b): after combing pipes.

reduced by, for example, combing/removing the shorted pipe, i.e., pipe 2. Figure 5.2 (b) illustrates the network after
combing pipe 1 and pipe 2. Following the same steps shown above, it can be determined that the maximum time step
is 0.5𝑠, and the number of computation units for pipes 1 and 2 are 2 and 4, respectively, thus significantly reducing the
total number of computation nodes in x-t plane required for 10𝑠 simulation to 10/0.5 × (2 + 4) = 26.

In this example, we implicitly assumed that pipe properties were the same (e.g., diameter, material), however these
properties affect wave propagation, reflection, and damping. Hence, despite the benefits in reducing computation
costs, merging or removing pipes to improve computational efficiency is not straightforward and requires careful
considerations of how these changes will affect modeling accuracy. In other words, any discontinuity or change in
pipe properties will create changes in wave propagation, and hence, if removed will change the model. For example,
suppose pipe 1 and 3 in Figure 5.2 have the same diameter, while pipe 2 has smaller diameter, then a certain portion
of wave speed will be reflected at junctions connecting the pipes. However, if pipe 2 is to be removed, and pipe 1 is
then connected to pipe 3, which exhibit the same diameter, there will be no reflection observed in the new junction,
thus altering the wave propagation in the network. Therefore, precautions are required before removing or combing
the short pipes, or modifying network topology in general.

Moreover, the simulation time step can be controlled by specifying large number of segments in the critical pipe, which
will also control the wave speed adjustments (𝜑), as shown in Figure 5.3 calculated for network Tnet1. The black curve
shows the reduction in the simulation time step as the number of segments in the critical pipe increases. Subsequently,
the decreased time step results in a reduction in wave speed adjustment (𝑎𝑎𝑑𝑗 = 𝑎 × (1 + 𝜑)), as illustrated by the
red curve. The red line represents the average wave speed adjustment and the shaded area represents the maximum
and minimum wave speed adjustments for all pipes in the network. For example, when the critical pipe is divided
into 40 segments, the time step is reduced to less than 0.001s, and the adjustment of wave speed is reduced to about
0.005, which is negligibly small. However, there is obviously a computational trade-off between numerical accuracy
and computational efficiency.

Figure 5.3: Time step (black, left y-axis) versus the number of computational units on the critical pipe and the wave
speed adjustments (red, right y-axis) showing the mean (red line) and the max-min range (shaded area).

5.3. Transient Simulation 17

TSNet Documentation, Release 0.2.2

5.3.3 Numerical Scheme

The explicit MOC technique adopted to solve the compatibility equations is explained in a simple network. Figure
5.4 illustrates a simple piped network and the corresponding MOC characteristic grid on the x-t plane. Boundary
nodes (represented by the void circles), are defined by the physical elements in the network (or any discontinuity),
such as tanks, junctions, valves, pumps, leaks and bursts. Inner nodes (represented by solid circles) are numerically
specified to divide a single pipe into several segments, i.e., computational units, so that the propagation of pressure
waves can be properly modeled. The heads, 𝐻 , and flow velocities, 𝑉 , are computed for each computational node,
either boundary or inner node, and at each time based on the information at a previous time. Depending on the type
of the computational node (i.e. inner or boundary) and the specific boundary condition, the flows and heads may be
allocated and computed differently. Figure 5.5 shows a general example of two computational units for computing
flow velocities and heads. Note that for inner nodes, where there is no change in pipe or flow conditions, 𝐻𝑡

2 = 𝐻𝑡
3

and 𝑉 𝑡
2 = 𝑉 𝑡

3 . Otherwise, additional head/flow boundary conditions will be introduced between points 2 and 3 in
addition to the two compatibility equations. Detailed descriptions about different boundary conditions are discussed
in the next section.

Figure 5.4: Topology of a simple network

Steady/quasi-steady Friction Model

The solution of the compatibility equations is achieved by integrating the above equations along specific characteristic
lines of the numerical grid, which are solved to compute the head and flow velocity, 𝐻𝑡

𝑖 , 𝑉
𝑡
𝑖 , at new point in time and

space given that the conditions at the previous time step are known. The two characteristic equations describing the
hydraulic transients with steady friction model (ℎ𝑓 = ℎ𝑓 𝑠 = 𝑓 𝑉 2

2𝑔𝐷) are discretized and formulated as:

𝐶+ : (𝑉 𝑡
𝑖 − 𝑉 𝑡−1

𝑖−1) +
𝑔

𝑎
(𝐻𝑡

𝑖 −𝐻𝑡−1
𝑖−1) +

𝑓∆𝑡

2𝐷
𝑉 𝑡−1
𝑖−1 |𝑉

𝑡−1
𝑖−1 | +

𝑔∆𝑡

𝑎
𝑉 𝑡−1
𝑖−1 sin𝛼 = 0

𝐶− : (𝑉 𝑡
𝑖 − 𝑉 𝑡−1

𝑖+1) − 𝑔

𝑎
(𝐻𝑡

𝑖 −𝐻𝑡−1
𝑖+1) − 𝑓∆𝑡

2𝐷
𝑉 𝑡−1
𝑖+1 |𝑉

𝑡−1
𝑖+1 | −

𝑔∆𝑡

𝑎
𝑉 𝑡−1
𝑖+1 sin𝛼 = 0

(5.1)

Once the MOC characteristic grid and numerical scheme are established, the explicit time marching MOC scheme can
be conducted in the computational units shown in Figure 5.5 as follows:

• First, given initial conditions, the heads and flow velocities at all computational nodes are known, and are
updated for the next time step, i.e. 𝐻𝑡

2, 𝑉
𝑡
2 , 𝐻

𝑡
3, and 𝑉 𝑡

3 will be updated based on 𝐻𝑡−1
1 , 𝑉 𝑡−1

1 , 𝐻𝑡−1
4 , and 𝑉 𝑡−1

4 .

18 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

Figure 5.5: MOC characteristic grids in x-t plane for two adjacent computational units

• Then, the relation between 𝐻𝑡
2 and 𝑉 𝑡

2 with known 𝐻𝑡−1
1 , 𝑉 𝑡−1

1 , and properties of the computation unit 1, such
as wave speed (𝑎1) and friction factor(𝑓1) are established along the positive characteristic line (𝐶+):

𝑉 𝑡
2 +

𝑔

𝑎1
𝐻𝑡

2 = 𝑉 𝑡−1
1 +

𝑔

𝑎1
𝐻𝑡−1

1 − 𝑓1∆𝑡

2𝐷1
𝑉 𝑡−1
1 |𝑉 𝑡−1

1 | +
𝑔∆𝑡

𝑎1
𝑉 𝑡−1
1 sin𝛼1

• Similarly, 𝐻𝑡
3 and 𝑉 𝑡

3 is updated using the compatibility equations along the negative characteristic line (𝐶−)
and conditions at previous time step, 𝐻𝑡−1

4 , 𝑉 𝑡−1
4 :

𝑉 𝑡
3 − 𝑔

𝑎2
𝐻𝑡

3 = −𝑉 𝑡−1
4 +

𝑔

𝑎2
𝐻𝑡−1

4 +
𝑓2∆𝑡

2𝐷2
𝑉 𝑡−1
4 |𝑉 𝑡−1

4 | − 𝑔∆𝑡

𝑎2
𝑉 4𝑡−1 sin𝛼2

• Subsequently, the system of equations is supplemented using the boundary conditions at the node connecting
the two computation units, such as energy equations that specify the relation between 𝐻𝑡

2 and 𝐻𝑡
3 and continuity

equations for 𝑉 𝑡
2 and 𝑉 𝑡

3 . Different boundary conditions can be defined to characterize different connections,
including valves, pumps, surge tanks, and pipe-to-pipe junctions with/or without leak, burst, and demand. For
example, if the connection is a pipe-to-pipe junction with a leak, the boundary conditions can be defined as:

𝐻𝑡
2 = 𝐻𝑡

3;𝑉 𝑡
2𝐴1 = 𝑉 𝑡

3𝐴2 + 𝑘𝑙

√︁
𝐻𝑡

2

where, 𝑘𝑙 is the leakage coefficient and 𝐴1, 𝐴2 are the cross-sectional area of computation units 1 and 2, respec-
tively. More boundary conditions are discussed in the next section.

• Ultimately, the system of equations containing compatibility equations, and the two boundary conditions can be
solved for the four unknowns, i.e.,:math:H_2^t, V_2^t, H_3^t, and 𝑉 𝑡

3 , thus completing the time marching from
𝑡− 1 to 𝑡.

Unsteady Friction Model

The local (𝜕𝑉𝜕𝑥) and convective instantaneous (𝜕𝑉𝜕𝑡)acceleration terms are approximated using finite-difference schemes
on the characteristic grid, as shown in Figure 5.6. The explicit fist-order finite difference scheme is implemented such
that the computation of the acceleration terms does not interact with adjacent computational sections, thus preserv-
ing the original structure of the MOC scheme. Mathematically, the acceleration terms along positive and negative

5.3. Transient Simulation 19

TSNet Documentation, Release 0.2.2

characteristic lines can be represented as:

𝐶+ :
𝜕𝑉

𝜕𝑡

+

=
𝑉 𝑡−1
1 − 𝑉 𝑡−2

1

∆𝑡

𝜕𝑉

𝜕𝑥

+

=
𝑉 𝑡−1
2 − 𝑉 𝑡−1

1

∆𝑥

𝐶− :
𝜕𝑉

𝜕𝑡

−
=

𝑉 𝑡−1
4 − 𝑉 𝑡−2

4

∆𝑡

𝜕𝑉

𝜕𝑥

−
=

𝑉 𝑡−1
4 − 𝑉 𝑡−1

3

∆𝑥

Figure 5.6: MOC characteristic grid with finite difference unsteady friction

Subsequently, the formulation of unsteady friction can be incorporated into the compatibility equations with additional
terms describing the instantaneous acceleration-based unsteady friction model, as below:

𝐶+ : (𝑉 𝑡
𝑖 − 𝑉 𝑡−1

𝑖−1) +
𝑔

𝑎
(𝐻𝑡

𝑖 −𝐻𝑡−1
𝑖−1) +

𝑔

𝑎
∆𝑡𝑉 𝑡−1

𝑖−1 sin𝛼 +
𝑓∆𝑥

2𝐷
𝑉 𝑡−1
𝑖−1 |𝑉

𝑡−1
𝑖−1 |

+
𝑘𝑢
2𝑔

[︀
(𝑉 𝑡−1

𝑖−1 − 𝑉 𝑡−2
𝑖−1) + sign(𝑉 𝑡−1

𝑖−1)
⃒⃒
𝑉 𝑡−1
𝑖 − 𝑉 𝑡−1

𝑖−1

⃒⃒]︀
= 0

𝐶− : (𝑉 𝑡
𝑖 − 𝑉 𝑡−1

𝑖+1) − 𝑔

𝑎
(𝐻𝑡

𝑖 −𝐻𝑡−1
𝑖+1) +

𝑔

𝑎
∆𝑡𝑉 𝑡−1

𝑖+1 sin𝛼− 𝑓∆𝑥

2𝐷
𝑉 𝑡−1
𝑖+1 |𝑉

𝑡−1
𝑖+1 |

−𝑘𝑢
2𝑔

[︀
(𝑉 𝑡−1

𝑖+1 − 𝑉 𝑡−2
𝑖+1) + sign(𝑉 𝑡−1

𝑖+1)
⃒⃒
𝑉 𝑡−1
𝑖+1 − 𝑉 𝑡−1

𝑖

⃒⃒]︀
= 0

(5.2)

20 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

5.3.4 Boundary Conditions

Boundary conditions are required to characterize the devices or discontinuities, such as such as tanks, junctions, valves,
pumps, leaks and bursts, between two computational units. Supplemented by the boundary conditions specifying the
relations between 𝐻𝑡

2, 𝐻
𝑡
3, 𝑉

𝑡
2 , 𝑉

𝑡
3 as in Figure 5.5 or Figure 5.6, the compatibility equations (Eq.5.1 or Eq.5.2) can

then be solved to obtain 𝐻𝑡
2, 𝐻

𝑡
3, 𝑉

𝑡
2 , and 𝑉 𝑡

3 . The following sections discuss the boundary conditions for devices and
discontinuities in detail.

Surge tanks

The modeling of water hammer protection devices, including the open and closed surge tanks, are also incorporated
in TSNet. An open surge tank is modeled as an open chamber connected directly to a pipeline and is open to the
atmosphere [WYSS93]. Initially, the water head (𝑧) in the tank equals to the hydraulic head in the upstream pipeline.
During transient simulation, the open surge tank moderates pressure transients by storing the excess water when
a pressure jump occurs in the pipeline connection, or supplying water in the event of a pressure drop. Then, the
boundary conditions at the open surge tank can be formulated as:

𝑉 𝑡
2𝐴1 − 𝑉 𝑡

3𝐴2 = 𝑄𝑡
𝑇 continuity

𝐻𝑡
2 = 𝐻𝑡

3 energy conservation

𝐻𝑡
2 = 𝑧𝑡 energy conservation

𝑧𝑡 = 𝑧𝑡−1 +
∆𝑡

𝑎𝐴𝑇

(︀
𝑄𝑡

𝑇 + 𝑄𝑡−1
𝑇

)︀
tank water level

(5.3)

where 𝑄𝑇 is the flow rate into the surge tank, 𝑧 is the water level in the surge tank, and 𝐴𝑇 is the cross-sectional
area of the surge tank. With six equations (two compatity equations and four boundary conditions) and six unknowns
(𝑉 𝑡

2 , 𝑉
𝑡
3 , 𝐻

𝑡
2, 𝐻

𝑡
3, 𝑧

𝑡, 𝑄𝑡
𝑇), the above system of equations can be solved at each time step. Other devices can be modeled

as well by defining the corresponding boundary conditions to replace Eq.5.3.

In TSNet, an open surge tank is assumed to exhibit infinite height so that the tank never overflows. The user can add
an open surge tank to an existing network in the TSNet model by defining the desired location and the cross-sectional
area of the surge tank, as shown:

tank_node = 'JUNCTION-90'
tank_area = 10 # tank cross sectional area [m^2]
tm.add_surge_tank(tank_node, [tank_area], 'open')

Although the infinite height assumption is not realistic, due to the modeling simplicity, open surge tanks can serve an
good initial approach for investigating the placement of surge protection devices. In fact, the major disadvantages of
open surge tanks is that it typically cannot accommodate large pressure transients unless the tank is excessively tall
and large, which limits its usefulness.

Hence, we also included closed surge tank, i.e., air chamber, in TSNet as more realistic water hammer protection
devices. An air chamber is a relatively small sealed vessel with compressed air at its top and water in the bottom
[WYSS93]. During transient simulation, the closed surge tank also moderates pressure transients by slowing down
the deceleration or the acceleration of water flow. For example, when pressure in the upstream connection increases,
water flows into the tank, water level in the tank increases, air volume compresses, and air pressure increases, thus
slowing down the acceleration of the water inflow into the tank and the increase in pressure. Similarly, when pressure
in the upstream connection drops, water flows from the tank, then water level in the chamber decreases, air volume
increases, and air pressure decreases, thus slowing the deceleration of the water flow and the decrease of pressure
head. The boundary conditions characterizing close surge tank in the computational units shown in Figure 5.5 are

5.3. Transient Simulation 21

TSNet Documentation, Release 0.2.2

formulated as:

𝑉 𝑡
2𝐴1 − 𝑉 𝑡

3𝐴2 = 𝑄𝑡
𝑇 continuity

𝐻𝑡
2 = 𝐻3

𝑡 energy conservation

𝐻𝑡
𝐴 = 𝐻2𝑡 + 𝐻𝑏 − 𝑧𝑡 energy conservation

𝑧𝑡 = 𝑧𝑡−1 +
∆𝑡

𝑎𝐴𝑇

(︀
𝑄𝑡

𝑇 + 𝑄𝑡−1
𝑇

)︀
tank water level

𝐻𝑡
𝐴𝒱𝑡

𝐴 = constant perfect gas law

𝒱𝑡
𝐴 = 𝒱𝑡−1

𝐴 −𝐴𝑇

(︀
𝑧𝑡 − 𝑧𝑡−1

)︀
tank air volume

where 𝑄𝑇 is the flow rate into the surge tank, 𝑧 is the water level in the surge tank, 𝐻𝐴,𝒱𝐴 are the total head, and the
volume of the air in the surge tank, 𝐻𝑏 is the barometric pressure, and 𝐴𝑇 is the cross-sectional area of the surge tank.

The user can add a closed surge tank by specifying the location, cross-sectional area, total height of the surge tank,
and initial water height in the tank:

tank_node = 'JUNCTION-90'
tank_area = 10 # tank cross sectional area [m^2]
tank_height = 10 # tank height [m]
water_height = 5 # initial water level [m]
tm.add_surge_tank(tank_node, [tank_area,tank_height,water_height], 'closed')

Valve Operations

Valve operations, including closure and opening, are supported in TSNet. The default valve shape is gate valve, the
valve characteristics curve of which is defined according to [STWV96]. The following examples illustrate how to
perform valve operations.

Valve closure can be simulated by defining the valve closure start time (𝑡𝑠), the operating duration (𝑡𝑐), the valve open
percentage when the closure is completed (𝑠𝑒), and the closure constant (𝑚), which characterizes the shape of the
closure curve. These parameters essentially define the valve closure curve. For example, the code below will yield the
blue curve shown in Figure 5.7. If the closure constant (𝑚) is instead set to 2, the valve curve will then correspond to
the orange curve in Figure 5.7.

tc = 1 # valve closure period [s]
ts = 0 # valve closure start time [s]
se = 0.5 # end open ratio
m = 1 # closure constant [dimensionless]
valve_op = [tc,ts,se,m]
tm.valve_closure('VALVE',valve_op)

Furthermore, valve opening can be simulated by defining a similar set of parameters related to the valve opening curve.
The valve opening curves with 𝑚 = 1 and 𝑚 = 2 are illustrated in Figure 5.8.

tc = 1 # valve opening period [s]
ts = 0 # valve opening start time [s]
se = 0.5 # end open ratio
m = 1 # opening constant [dimensionless]
valve_op = [tc,ts,se,m]
tm.valve_opening('VALVE',valve_op)

Pump Operations

The TSNet also includes the capability to perform controlled pump operations by specifying how the pump rotation
speed changes over time. Explicitly, during pump start-up, the rotational speed of the pump is increased based on the

22 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

Figure 5.7: Valve closure operating rule

Figure 5.8: Valve opening operating rule

5.3. Transient Simulation 23

TSNet Documentation, Release 0.2.2

user defined operating rule. The pump is then modeled using the two compatibility equations, a continuity equation,
the pump characteristic curve at given rotation speed, and the affinity laws [LAJW99], thus resulting in the rise of
pump flowrate and the addition of mechanical energy. Conversely, during pump shut-off, as the rotational speed of
the pump decreased according to the user defined operating rule, the pump flowrate and the addition of mechanical
energy decline. However, pump shut-off due to power failure, when the reduction of pump rotation speed depends on
the characteristics of the pump (such as the rotate moment of inertia), has not been included yet.

The following example shows how to add pump shut-off event to the network, where the parameters are defined in the
same manner as in valve closure:

tc = 1 # pump closure period
ts = 0 # pump closure start time
se = 0 # end open percentage
m = 1 # closure constant
pump_op = [tc,ts,se,m]
tm.pump_shut_off('PUMP2', pump_op)

Correspondingly, the controlled pump opening can be simulated using:

tc = 1 # pump opening period [s]
ts = 0 # pump opening start time [s]
se = 1 # end open percentage [s]
m = 1 # opening constant [dimensionless]
pump_op = [tc,ts,se,m]
tm.pump_start_up('PUMP2',pump_op)

It should be noted that a check valve is assumed in each pump, indicating that the reverse flow will be prevented
immediately.

Leaks

In TSNet, leaks and bursts are assigned to the network nodes. A leak is defined by specifying the leaking node name
and the emitter coefficient (𝑘𝑙):

emitter_coeff = 0.01 # [m^3/s/(m H20)^(1/2)]
tm.add_leak('JUNCTION-22', emitter_coeff)

Existing leaks should be included in the initial condition solver (WNTR simulator); thus, it is necessary to define
the leaks before calculating the initial conditions. For more information about the inclusion of leaks in steady state
calculation, please refer to WNTR documentation [WNTRSi]. During the transient simulation, the leaking node is
modeled using the two compatibility equations, a continuity equation, and an orifice equation which quantifies the
leak discharge (𝑄𝑙):

𝑄𝑙 = 𝑘𝑙

√︁
𝐻𝑝𝑙

where 𝐻𝑝𝑙 is the pressure head at the leaking node. Moreover, if the pressure head is negative, the leak discharge will
be set to zero, assuming a backflow preventer is installed on the leaking node.

Bursts

The simulation of burst and leaks is very similar. They share similar set of governing equations. The only difference
is that the burst opening is simulated only during the transient calculation and not included in the initial condition
calculation. In other words, using burst, the user can model new and evolving condition, while the leak model simulates
an existing leak in the system. In TSNet, the burst is assumed to be developed linearly, indicating that the burst area
increases linearly from zero to a size specified by the user during the specified time period. Thus, a burst event can

24 Chapter 5. Transient Modeling Framework

TSNet Documentation, Release 0.2.2

be modeled by defining the start and end time of the burst, and the final emitter coefficient when the burst is fully
developed:

ts = 1 # burst start time
tc = 1 # time for burst to fully develop
final_burst_coeff = 0.01 # final burst coeff [m^3/s/(m H20)^(1/2)]
tm.add_burst('JUNCTION-20', ts, tc, final_burst_coeff)

Demand Pulse

TSNet simulates transients generated by instantaneous demand pulse by allowing the demand coefficient to change
with time We assume that the amplitude of a demand pulse (𝑝𝑎(𝑡)) follows a symmetrical trapezoidal time-domain
function, as illustrated in Figure 5.9; thus, the demand pulse can be modeled by defining the start time (𝑡𝑠), the total
duration (𝑡𝑐), the transmission time (𝑡𝑝), and the peak of the amplitude (𝑑𝑝). Moreover, it should be noted that the
assumed trapezoidal pulse shape is defined by method demandpulse() in model module. It can be easily modified
to take any shape with moderate coding efforts. Subsequently, the time-varying demand coefficient is defined as
𝑘(𝑡) = 𝑘0 + 𝑘0 × 𝑝𝑎(𝑡).

Figure 5.9: Demand pulse curve

A demand pulse shape is defined and assigned to a specified junction:

tc = 1 # total demand period [s]
ts = 1 # demand pulse start time [s]
tp = 0.2 # demand pulse transmission time [s]
dp = 1 # demand peak amplitude [unitless]
demand_pulse = [tc,ts,tp,dpa]
tm.add_demand_pulse('N2',demand_pulse)

5.3. Transient Simulation 25

TSNet Documentation, Release 0.2.2

26 Chapter 5. Transient Modeling Framework

CHAPTER 6

Simulation Results

6.1 Results Structure

Simulation results are returned and saved in the tsnet.network.model.TransientModel object for each
node and link in the networks.

Node results include the following attributes:

• Head [m]

• Emitter discharge (including leaks and bursts) [𝑚3/𝑠]

• Actual demand discharge [𝑚3/𝑠]

Link results include the following attributes:

• Head at start node [m]

• Flow velocity at start node [𝑚3/𝑠]

• Flow rate at start node [𝑚3/𝑠]

• Head at end node [m]

• Flow velocity at end node [𝑚3/𝑠]

• Flow rate at end node [𝑚3/𝑠]

The result for each attribute is a Numpy array, representing the time history of the simulation results, the length of
which equals the total number of simulation time steps (𝑡𝑛).

For example, the results of head, emitter discharge and demand discharge at node ‘JUNCTION-105’ can be accessed
by:

node = tm.get_node['JUNCTION-105']
head = node.head
emitter_discharge = node.emitter_discharge
demand_discharge = node.demand_discharge

27

TSNet Documentation, Release 0.2.2

To obtain the results on pipe ‘LINK-40’:

pipe = tm.get_link('LINK-40')
start_head = pipe.start_node_head
end_head = pipe.end_node_head
start_velocity = pipe.start_node_velocity
end_velocity = pipe.end_node_velocity
start_flowrate = pipe.start_node_flowrate
end_flowrate = pipe.end_node_flowrate

6.2 Time Step and Time Stamps

Additionally, the time step (in seconds) and the time stamps (in seconds from the start of the simulation) are also stored
in the tsnet.network.model.TransientModel object. They can be retrieved by:

dt = tm.time_step
tt = tm.simulation_timestamps

The results can then be plotted with respect to the time stamps using matplotlib or any other preferred package, as
shown in Figure 6.1:

import matplotlib.pyplot as plt
plt.plot(tt ,head)

Figure 6.1: Head results at JUNCTION-105

6.3 Results Retrieval

The tsnet.network.model.TransientModel object, including the information of the network, operation
rules, and the simulated results, is saved in the file results_obj.obj, located in the current folder. The name of the
results file is defined by the input parameter result_obj. If result_obj is not given, the default results file is results.obj.

To retrieve the results from a previously completed simulation, one can read the tsnet.network.model.
TransientModel object from the results_obj.obj file and access results from the objet by:

28 Chapter 6. Simulation Results

TSNet Documentation, Release 0.2.2

import pickle
file = open('results.obj', 'rb')
tm = pickle.load(file)

6.4 Runtime and Progress

At the beginning of transient simulation, TSNet will report the approximation simulation time based on the calculation
time of first few time steps and the total number of time steps. Additionally, the computation progress will also printed
on the screen as the simulation proceeds, as shown in Figure 6.2.

Figure 6.2: Runtime output about calculation time and process.

6.4. Runtime and Progress 29

TSNet Documentation, Release 0.2.2

30 Chapter 6. Simulation Results

CHAPTER 7

Example Applications

7.1 Example 1 - End-valve closure

This example shows how to simulate the closure of a valve located at the boundary of a network. The first example
network is shown below in Figure 7.1, adopted from [[STWY67],WOLB05]_. It comprises 9 pipes, 8 junctions, one
reservoir, 3 closed loops, and one valve located at the downstream end of the system. There are five steps that the user
needs to take to run the transient simulation using the TSNet package:

Figure 7.1: Tnet1 network graphics

1. Import TSNet package, read the EPANET INP file, and create transient model object.

31

TSNet Documentation, Release 0.2.2

import tsnet
Open an example network and create a transient model
tm = tsnet.network.TransientModel('/Users/luxing/Code/TSNet/examples/networks/Tnet1.
→˓inp')

2. Set the wave speed for all pipes to 1200𝑚/𝑠, time step to 0.1𝑠, and simulation period to 60𝑠.

tm.set_wavespeed(1200.) # m/s

Set time options
tf = 20 # simulation period [s]
tm.set_time(tf)

3. Set valve operating rules, including how long it takes to close the valve (𝑡𝑐), when to start close the valve (𝑡𝑠),
the opening percentage when the closure is completed (𝑠𝑒), and the shape of the closure operating curve (𝑚, 1
stands for linear closure, 2 stands for quadratic closure).

ts = 5 # valve closure start time [s]
tc = 1 # valve closure period [s]
se = 0 # end open percentage [s]
m = 2 # closure constant [dimensionless]
tm.valve_closure('VALVE',[tc,ts,se,m])

Initialize steady state simulation

4. Compute steady state results to establish the initial condition for transient simulation.

tm = tsnet.simulation.Initializer(tm,t0)

Transient simulation
tm = tsnet.simulation.MOCSimulator(tm)

5. Run transient simulation and specify the name of the results file.

report results
node = ['N2','N3']
tm.plot_node_head(node)

After the transient simulation, the results at nodes and links will be returned and stored in the transient model (tm)
instance. The time history of flow rate on the start node of pipe P2 throughout the simulation can be retrieved by:

>>> print(tm.links['P2'].start_node_flowrate)

To plot the head results at N3:

yields Figure 7.2:

Similarly, to plot the flow rate results in pipe P2:

yields Figure 7.3:

7.2 Example 2 - Pump operations

This example illustrates how the package models a transient event resulting from a controlled pump shut-off , i.e., the
pump speed is ramped down. This example network, Tnet2, is shown below in Figure 7.4. Tnet2 comprises 113 pipes,

32 Chapter 7. Example Applications

TSNet Documentation, Release 0.2.2

Figure 7.2: Tnet1 - Head at node N3.

Figure 7.3: Tnet1 - Flow rate at the start and end node of pipe P2.

7.2. Example 2 - Pump operations 33

TSNet Documentation, Release 0.2.2

91 junctions, 2 pumps, 2 reservoir, 3 tanks, and one valve located in the middle of the network. A transient simulation
of 50 seconds is generated by shutting off PUMP2. There are five steps user needs to take:

Figure 7.4: Tnet2 network graphics

1. Import TSNet package, read the EPANET INP file, and create transient model object.

import tsnet
open an example network and create a transient model
inp_file = '/Users/luxing/Code/TSNet/examples/networks/Tnet2.inp'
tm = tsnet.network.TransientModel(inp_file)

2. Set the wave speed for all pipes to be 1200𝑚/𝑠 and simulation period to be 50𝑠. Use suggested time step.

Set wavespeed
tm.set_wavespeed(1200.)
Set time step
tf = 20 # simulation period [s]
tm.set_time(tf)

3. Set pump operating rules, including how long it takes to shutdown the pump (𝑡𝑐), when to the shut-off starts (𝑡𝑠),
the pump speed multiplier value when the shut-off is completed (𝑠𝑒), and the shape of the shut-off operation
curve (𝑚, 1 stands for linear closure, 2 stands for quadratic closure).

34 Chapter 7. Example Applications

TSNet Documentation, Release 0.2.2

Set pump shut off
tc = 1 # pump closure period
ts = 1 # pump closure start time
se = 0 # end open percentage
m = 1 # closure constant
pump_op = [tc,ts,se,m]
tm.pump_shut_off('PUMP2', pump_op)

4. Compute steady state results to establish the initial condition for transient simulation.

Initialize steady state simulation
t0 = 0. # initialize the simulation at 0s
engine = 'DD' # or PPD
tm = tsnet.simulation.Initializer(tm, t0, engine)

5. Run transient simulation and specify the name of the results file.

Transient simulation
results_obj = 'Tnet2' # name of the object for saving simulation results.head
tm = tsnet.simulation.MOCSimulator(tm,results_obj)

After the transient simulation, the results at nodes and links will be returned to the transient model (tm) instance,
which is then stored in Tnet2.obj. The actual demand discharge at JUNCTION-105 throughout the simulation can be
retrieved by:

>>> print(tm.nodes['JUNCTION-105'].demand_discharge)

To plot the head results at JUNCTION-105:

import matplotlib.pyplot as plt
node = 'JUNCTION-105'
node = tm.get_node(node)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='w')
plt.plot(tm.simulation_timestamps, node._head, 'k', lw=3)
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Pressure Head at Node %s '%node)
plt.xlabel("Time [s]", fontsize=14)
plt.ylabel("Pressure Head [m]", fontsize=14)

plt.legend(loc='best')

yields Figure 6.1:

Similarly, to plot the velocity results in PIPE-109:

fig.savefig('./docs/figures/tnet2_node.png', format='png',dpi=100)

pipe = 'PIPE-109'
pipe = tm.get_link(pipe)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='w')
plt.plot(tm.simulation_timestamps,pipe.start_node_velocity,label='Start Node')
plt.plot(tm.simulation_timestamps,pipe.end_node_velocity,label='End Node')
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Velocity of Pipe %s '%pipe)
plt.xlabel("Time [s]")
plt.ylabel("Velocity [m/s]")
plt.legend(loc='best')

7.2. Example 2 - Pump operations 35

TSNet Documentation, Release 0.2.2

Figure 7.5: Tnet2 - Head at node JUNCTION-105.

yields Figure 7.6:

Figure 7.6: Tnet2 - Velocity at the start and end node of PIPE-109.

7.3 Example 3 - Burst and leak

This example reveals how TSNet simulates pipe bursts and leaks. This example network, adapted from [OSBH08], is
shown below in Figure 7.7. Tnet3 comprises 168 pipes, 126 junctions, 8 valve, 2 pumps, one reservoir, and two tanks.
The transient event is generated by a burst and a background leak. There are five steps that the user would need to
take:

1. Import TSNet package, read the EPANET INP file, and create transient model object.

import tsnet
open an example network and create a transient model
inp_file = '/Users/luxing/Code/TSNet/examples/networks/Tnet3.inp'
tm = tsnet.network.TransientModel(inp_file)

36 Chapter 7. Example Applications

TSNet Documentation, Release 0.2.2

Figure 7.7: Tnet3 network graphics

2. The user can import custom wave speeds for each pipe. To demonstrate how to assign different wave speed, we
assume that the wave speed for the pipes is normally distributed with mean of 1200𝑚/𝑠 and standard deviation
of :math: 100m/s. Then, assign the randomly generated wave speed to each pipe in the network according to the
order the pipes defined in the INP file. Subsequently, set the simulation period as 20𝑠, and use suggested time
step.

Set wavespeed
import numpy as np
wavespeed = np.random.normal(1200., 100., size=tm.num_pipes)
tm.set_wavespeed(wavespeed)
Set time step
tf = 20 # simulation period [s]
tm.set_time(tf)

3. Define background leak location, JUNCTION-22, and specify the emitter coefficient. The leak will be included
in the initial condition calculation. See WNTR documentation [WNTRSi] for more info about leak simulation.

Add leak
emitter_coeff = 0.01 # [m^3/s/(m H20)^(1/2)]
tm.add_leak('JUNCTION-22', emitter_coeff)

4. Compute steady state results to establish the initial condition for transient simulation.

Initialize steady state simulation
t0 = 0. # initialize the simulation at 0s
engine = 'PDD' # or Epanet
tm = tsnet.simulation.Initializer(tm, t0, engine)

5. Set up burst event, including burst location, JUNCTION-20, burst start time (𝑡𝑠), time for burst to fully develop
(𝑡𝑐), and the final emitter coefficient (final_burst_coeff).

7.3. Example 3 - Burst and leak 37

TSNet Documentation, Release 0.2.2

Add burst
ts = 1 # burst start time
tc = 1 # time for burst to fully develop
final_burst_coeff = 0.01 # final burst coeff [m^3/s/(m H20)^(1/2)]
tm.add_burst('JUNCTION-20', ts, tc, final_burst_coeff)

6. Run transient simulation and specify the name of the results file.

Transient simulation
result_obj = 'Tnet3' # name of the object for saving simulation results
tm = tsnet.simulation.MOCSimulator(tm,result_obj)

After the transient simulation, the results at nodes and links will be returned to the transient model (tm) instance, which
is subsequently stored in Tnet3.obj.

To understand how much water has been lost through the leakage at JUNCTION-22, we can plot the leak discharge
results at JUNCTION-22:

import matplotlib.pyplot as plt
node = 'JUNCTION-22'
node = tm.get_node(node)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps,node.emitter_discharge)
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Leak discharge at Node %s '%node)
plt.xlabel("Time [s]")
plt.ylabel("Leak discharge [m^3/s]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

yields Figure 7.8:

Figure 7.8: Tnet3 - Leak discharge at node JUNCTION-22.

Similarly, to reveal how much water has been wasted through the burst event at JUNCTION-20, we can plot the burst
discharge results at JUNCTION-20:

node = 'JUNCTION-20'
node = tm.get_node(node)

(continues on next page)

38 Chapter 7. Example Applications

TSNet Documentation, Release 0.2.2

(continued from previous page)

fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps,node.emitter_discharge)
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Burst discharge at Node %s '%node)
plt.xlabel("Time [s]")
plt.ylabel("Burst discharge [m^3/s]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

yields Figure 7.9:

Figure 7.9: Tnet3 - Burst discharge at node JUNCTION-20.

Additionally, to plot the velocity results in LINK-40:

pipe = 'LINK-40'
pipe = tm.get_link(pipe)
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')
plt.plot(tm.simulation_timestamps,pipe.start_node_velocity,label='Start Node')
plt.plot(tm.simulation_timestamps,pipe.end_node_velocity,label='End Node')
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Velocity of Pipe %s '%pipe)
plt.xlabel("Time [s]")
plt.ylabel("Velocity [m/s]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

yields Figure 7.10:

Moreover, we can plot head results at some further nodes, such as JUNCTION-8, JUNCTION-16, JUNCTION-45,
JUNCTION-90, by:

node1 = tm.get_node('JUNCTION-8')
node2 = tm.get_node('JUNCTION-16')
node3 = tm.get_node('JUNCTION-45')
node4 = tm.get_node('JUNCTION-90')
fig = plt.figure(figsize=(10,4), dpi=80, facecolor='w', edgecolor='k')

(continues on next page)

7.3. Example 3 - Burst and leak 39

TSNet Documentation, Release 0.2.2

Figure 7.10: Tnet3 - Velocity at the start and end node of LINK-40.

(continued from previous page)

plt.plot(tm.simulation_timestamps, node1._head, label='JUNCTION-8')
plt.plot(tm.simulation_timestamps, node2._head, label='JUNCTION-16')
plt.plot(tm.simulation_timestamps, node3._head, label='JUNCTION-45')
plt.plot(tm.simulation_timestamps, node4._head, label='JUNCTION-90')
plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]])
plt.title('Head on Junctions')
plt.xlabel("Time [s]")
plt.ylabel("Head [m]")
plt.legend(loc='best')
plt.grid(True)
plt.show()

The results are demonstrated in Figure 7.11. It can be noticed that the amplitude of the pressure transient at
JUNCTION-8 and JUNCTION-16 is greater than that at other two junctions which are further away from JUNCTION-
20, where the burst occurred.

Figure 7.11: Tnet3 - Head at multiple junctions.

More examples are includeded in https://github.com/glorialulu/TSNet/tree/master/examples.

40 Chapter 7. Example Applications

https://github.com/glorialulu/TSNet/tree/master/examples

CHAPTER 8

Comparison with Hammer

During the development process, we have consistently compared TSNet results with Bentley Hammer [HAMMER]
using different networks and many different transient events. In this section, we present the comparison between
TSNet and Hammer results. The Hammer models used to generate the events is also included in the GitHub example
directory (https://github.com/glorialulu/TSNet/tree/master/examples/networks) for the user’s reference.

8.1 Tnet 0

We first show the comparison for a simple network, consisting of one reservoir, two pipes, and one valve, as illustrated
in Figure 8.1. The wave speed for both pipes is 1200𝑚/𝑠, and lengths and diameters are given in the figure. The
transient event is generated by closing the end-valve at the beginning of the simulation during 2s; thus, the flow rate
at the end valve decreases linearly from 0.05𝑚3/𝑠 at 𝑡 = 0𝑠 to 0𝑚3/𝑠 at 𝑡 = 2𝑠 and remains zero thereafter. Figure
8.2 (a) shows the flow rate through the valve, and Figure 8.2 (b) presents the pressure transients generated at node
N-1 during 60s simulation period. The solid line represents TSNet results and the dashed-dotted line shows Hammer
results. These results indicate a perfect match between TSNet and Hammer simulation results for this simple network.

Figure 8.1: Topology of a simple network.

8.2 Tnet 3

We then show the comparison between TSNet and Hammer results for a more complicated network, Tnet3, for three
different transient events:

41

https://github.com/glorialulu/TSNet/tree/master/examples/networks

TSNet Documentation, Release 0.2.2

Figure 8.2: Comparison of TSNet and Hammer results: (a) flow at the valve; (b) pressure head at N-1.

1. Shut down of PUMP-1,

2. Burst at JUNCTION-73, and

3. Closure of VALVE-1.

The results for the three transient-generating events are shown in Figure 8.3, Figure 8.4, and Figure 8.5, respectively.

• We would like to note beforehand that we do not expect to obtain the exact same results from TSNet as Ham-
mer since different numerical schemes were implemented, such as wave speed adjustment, pressure dependent
demand, and boundary conditions.

8.2.1 Pump shut-down

Both TSNet and Hammer are utilized to simulate the shut down of PUMP-1. The time step is specified as 0.002s
in both software. Figure 8.3 reports the pressure change with respect to the nominal pressure at multiple junctions,
where the solid lines represent TSNet results and the dashed lines show Hammer results. TSNet and Hammer results
are very similar to each other in terms of attenuation and phase shift throughout the 20s simulation period, despite
slight discrepancies, which can be explained by the different wave speed adjustment schemes and boundary condition
configurations adopted by the two software.

8.2.2 Burst event

Aburst event was simulated at Junction-73 using both TSNet and Hammer. Figure 8.4 reports the pressure change
with respect to the nominal pressure at multiple junctions, where the solid lines represent TSNet results, and the
dashed lines show Hammer results. It can be observed that during the first transient cycle, i.e., around 0-8s, TSNet
and Hammer results exhibit very good agreement with each other. Although the discrepancies increase a bit in terms
of attenuation and phase shift during the latter period, the overall match is satisfactory considering that different time
step and wave speed adjustment schemes are adopted in the two software.

8.2.3 Valve closure

Both TSNet and Hammer are utilized to simulate the closure of VALVE-1. The comparison of the results is presented in
Figure 8.5. Again, adequate resemblance can be observed between the TSNet (a) and Hammer results (b). Considering
that pressure transients are of smaller amplitude and more chaotic, the results are presented in two separate plots with
same scale for clarity.

42 Chapter 8. Comparison with Hammer

TSNet Documentation, Release 0.2.2

Figure 8.3: Comparison of pressure transients at multiple junctions generated by shutting down PUMP-1 in TNet3:
TSNet (solid lines) Hammer (dashed lines) results.

Figure 8.4: Comparison of pressure transients at multiple junctions generated by the burst at JUNCTION-73 in Tnet3:
TSNet (solid lines) Hammer (dashed lines) results.

8.2. Tnet 3 43

TSNet Documentation, Release 0.2.2

Figure 8.5: Comparison of pressure transients at multiple junctions generated by closing VALVE-1 in Tnet3: (a):
TSNet results, (b): Hammer results.

44 Chapter 8. Comparison with Hammer

CHAPTER 9

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

9.1 Types of Contributions

9.1.1 Report Bugs

Report bugs at https://github.com/glorialulu/TSNet/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

9.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

9.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

45

https://github.com/glorialulu/TSNet/issues

TSNet Documentation, Release 0.2.2

9.1.4 Write Documentation

TSNet could always use more documentation, whether as part of the official TSNet docs, in docstrings, or even on the
web in blog posts, articles, and such.

9.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/glorialulu/TSNet/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

9.2 Get Started!

Ready to contribute? Here’s how to set up TSNet for local development.

1. Fork the TSNet repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/TSNet.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv TSNet
$ cd TSNet/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 TSNet tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

46 Chapter 9. Contributing

https://github.com/glorialulu/TSNet/issues

TSNet Documentation, Release 0.2.2

9.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.5, 3.6 and 3.7, and for PyPy. Check https://travis-ci.org/glorialulu/
TSNet/pull_requests and make sure that the tests pass for all supported Python versions.

9.4 Tips

To run a subset of tests:

$ py.test .\tests\test_tsnet.py

9.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

9.3. Pull Request Guidelines 47

https://travis-ci.org/glorialulu/TSNet/pull_requests
https://travis-ci.org/glorialulu/TSNet/pull_requests

TSNet Documentation, Release 0.2.2

48 Chapter 9. Contributing

CHAPTER 10

Credits

10.1 Development Lead

• Lu Xing <xinglu@utexas.edu>

• Lina Sela <linasela@utexas.edu>

10.2 Contributors

This package is being developed and supported by the WATSUP group at UT Austin. Contributing group members

• Gerardo Andres Riano Briceno <griano@utexas.edu>

• Ahmed A. Abokifa <ahmed.abokifa@utexas.edu>

49

mailto:xinglu@utexas.edu
mailto:linasela@utexas.edu
mailto:griano@utexas.edu
mailto:ahmed.abokifa@utexas.edu

TSNet Documentation, Release 0.2.2

50 Chapter 10. Credits

CHAPTER 11

History

11.1 0.1.0 (2019-08-15)

• First release on PyPI.

11.2 0.1.1 (2019-09-21)

11.3 0.1.2 (2020-01-20)

1. Fixed bugs about dead end and single pipe.

2. Added plot and change detection methods.

11.4 0.2.0 (2020-4-23)

1. Added quasi-steady and unsteady friction model.

2. Added open and closed surge tanks.

3. Added demand-pulse simulation.

4. Updated docs.

11.5 0.2.1 (2020-09-09)

1. Fixed minor bugs about valve default settings.

2. Updated documentation.

51

TSNet Documentation, Release 0.2.2

3. Updated WNTR compatibility.

11.6 0.2.2 (2020-09-24)

1. Updated WNTR compatibility.

11.7 0.2.3 (2021-11-12)

1. Only support WNTR version up until 0.3.0

11.8 0.2.4 (2022-06-17)

1. fix minor issues regarding reporting messages

2. Only support WNTR version up until 0.2.3.

11.9 0.3.0 (2023-02-22)

1. Support WNTR version 1.0.0

2. Test on python 3.10 and 3.11.

3. Drop supports for Python 3.6 and 3.7

52 Chapter 11. History

CHAPTER 12

tsnet package

12.1 Subpackages

12.1.1 tsnet.network package

Submodules

tsnet.network.control module

The tsnet.network.control module includes method to define network controls of the pump and valve.These control
modify parameters in the network during transient simulation.

tsnet.network.control.valveclosing(dt, tf, valve_op)
Define valve operation curve (percentage open v.s. time)

Parameters

• dt (float) – Time step

• tf (float) – Simulation Time

• valve_op (list) – Contains parameters to define valve operation rule valve_op =
[tc,ts,se,m] tc : the duration takes to close the valve [s] ts : closure start time [s] se : fi-
nal open percentage [s] m : closure constant [unitless]

Returns s – valve operation curve

Return type list

tsnet.network.control.valveopening(dt, tf, valve_op)
Define valve operation curve (percentage open v.s. time)

Parameters

• dt (float) – Time step

• tf (float) – Simulation Time

53

TSNet Documentation, Release 0.2.2

• valve_op (list) – Contains parameters to define valve operation rule valve_op =
[tc,ts,se,m] tc : the duration takes to close the valve [s] ts : closure start time [s] se : fi-
nal open percentage [s] m : closure constant [unitless]

Returns s – valve operation curve

Return type list

tsnet.network.control.pumpclosing(dt, tf, pump_op)
Define pump operation curve (percentage open v.s. time)

Parameters

• dt (float) – Time step

• tf (float) – Simulation Time

• valve_op (list) – Contains parameters to define valve operation rule valve_op =
[tc,ts,se,m] tc : the duration takes to close the valve [s] ts : closure start time [s] se : fi-
nal open percentage [s] m : closure constant [unitless]

Returns s – valve operation curve

Return type list

tsnet.network.control.pumpopening(dt, tf, pump_op)
Define pump operation curve (percentage open v.s. time)

Parameters

• dt (float) – Time step

• tf (float) – Simulation Time

• pump_op (list) – Contains parameters to define pump operation rule pump_op =
[tc,ts,se,m] tc : the duration takes to start up the pump [s] ts : open start time [s] se : fi-
nal open percentage [s] m : closure constant [unitless]

Returns s – valve operation curve

Return type list

tsnet.network.control.burstsetting(dt, tf, ts, tc, final_burst_coeff)
Calculate the burst area as a function of simulation time

Parameters

• dt (float) – Time step

• tf (float) – Simulation Time

• ts (float) – Burst start time

• tc (float) – Time for burst to fully develop

• final_burst_coeff (list or float) – Final emitter coefficient at the burst nodes

tsnet.network.control.demandpulse(dt, tf, tc, ts, tp, dp)
Calculate demand pulse multiplier

Parameters dt : float

Time step

tf [float] Simulation Time

tc [float] Total pulse duration

54 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

ts [float] Pulse start time

tp [float] Pulse increase time

dp [float] Pulse multiplier

tsnet.network.discretize module

The tsnet.network.discretize contains methods to perform spatial and temporal discretization by adjusting wave speed
and time step to solve compatibility equations in case of uneven wave travel time.

tsnet.network.discretize.discretization(tm, dt)
Discretize in temporal and spatial space using wave speed adjustment scheme.

Parameters

• tm (tsnet.network.geometry.TransientModel) – Network

• dt (float) – User defined time step

Returns tm – Network with updated parameters

Return type tsnet.network.geometry.TransientModel

tsnet.network.discretize.max_time_step(tm)
Determine the maximum time step based on Courant’s criteria.

Parameters tm (tsnet.network.geometry.TransientModel) – Network

Returns max_dt – Maximum time step allowed for this network

Return type float

tsnet.network.discretize.discretization_N(tm, dt)
Discretize in temporal and spatial space using wave speed adjustment scheme.

Parameters

• tm (tsnet.network.geometry.TransientModel) – Network

• dt (float) – User defined time step

Returns tm – Network with updated parameters

Return type tsnet.network.geometry.TransientModel

tsnet.network.discretize.max_time_step_N(tm, N)
Determine the maximum time step based on Courant’s criteria.

Parameters tm (tsnet.network.geometry.TransientModel) – Network

Returns max_dt – Maximum time step allowed for this network

Return type float

tsnet.network.discretize.cal_N(tm, dt)
Determine the number of computation unites (N_i) for each pipes.

Parameters

• tm (tsnet.network.geometry.TransientModel) – Network

• dt (float) – Time step for transient simulation

tsnet.network.discretize.adjust_wavev(tm)
Adjust wave speed and time step to solve compatibility equations.

12.1. Subpackages 55

TSNet Documentation, Release 0.2.2

Parameters tm (tsnet.network.geometry.TransientModel) – Network

Returns

• tm (tsnet.network.geometry.TransientModel) – Network with adjusted wave speed.

• dt (float) – Adjusted time step

tsnet.network.model module

The tsnet.network.geometry read in the geometry defined by EPANet .inp file, and assign additional parameters needed
in transient simulation later in tsnet.

class tsnet.network.model.TransientModel(inp_file)
Bases: wntr.network.model.WaterNetworkModel

Transient model class. :param inp_file_name: Directory and filename of EPANET inp file to load into the

WaterNetworkModel object.

set_wavespeed(wavespeed=1200, pipes=None)
Set wave speed for pipes in the network

Parameters

• wavespeed (float or int or list, optional) – If given as float or int, set
the value as wavespeed for all pipe; If given as list set the corresponding value to each
pipe, by default 1200.

• pipes (str or list, optional) – The list of pipe to define wavespeed, by de-
fault all pipe in the network.

set_roughness(roughness, pipes=None)
Set roughness coefficient for pipes in the network

Parameters

• roughness (float or int or list) – If given as float or int, set the value as
roughness for all pipe; If given as list set the corresponding value to each pipe. Make sure
to define it using the same method (H-W or D-W) as defined in .inp file.

• pipes (str or list, optional) – The list of pipe to define roughness coefficient,
by default all pipe in the network.

set_time(tf, dt=None)
Set time step and duration for the simulation.

Parameters

• tf (float) – Simulation period

• dt (float, optional) – time step, by default maximum allowed dt

set_time_N(tf, N=2)
Set time step and duration for the simulation.

Parameters

• tf (float) – Simulation period

• N (integer) – Number of segments in the critical pipe

56 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

add_leak(name, coeff)
Add leak to the transient model

Parameters

• name (str, optional) – The name of the leak nodes, by default None

• coeff (list or float, optional) – Emitter coefficient at the leak nodes, by
default None

add_burst(name, ts, tc, final_burst_coeff)
Add leak to the transient model

Parameters

• name (str) – The name of the leak nodes, by default None

• ts (float) – Burst start time

• tc (float) – Time for burst to fully develop

• final_burst_coeff (list or float) – Final emitter coefficient at the burst
nodes

add_blockage(name, percentage)
Add blockage to the transient model

Parameters

• name (str) – The name of the blockage nodes, by default None

• percentage (list or float) – The percentage of the blockage flow discharge

valve_closure(name, rule, curve=None)
Set valve closure rule

Parameters

• name (str) – The name of the valve to close

• rule (list) – Contains paramters to define valve operation rule rule = [tc,ts,se,m] tc :
the duration takes to close the valve [s] ts : closure start time [s] se : final open percentage
[s] m : closure constant [unitless]

• curve (list) – [(open_percentage[i], 1/kl[i]) for i] List of open percentage and the
corresponding inverse of valve coefficient

valve_opening(name, rule, curve=None)
Set valve opening rule

Parameters

• name (str) – The name of the valve to close

• rule (list) – Contains paramters to define valve operation rule rule = [tc,ts,se,m] tc :
the duration takes to open the valve [s] ts : opening start time [s] se : final open percentage
[s] m : closure constant [unitless]

• curve (list) – [(open_percentage[i], kl[i]) for i] List of open percentage and the cor-
responding valve coefficient

pump_shut_off(name, rule)
Set pump shut off rule

Parameters

• name (str) – The name of the pump to shut off

12.1. Subpackages 57

TSNet Documentation, Release 0.2.2

• rule (list) – Contains paramaters to define valve operation rule rule = [tc,ts,se,m] tc :
the duration takes to close the pump [s] ts : closure start time [s] se : final open percentage
[s] m : closure constant [unitless]

pump_start_up(name, rule)
Set pump start up rule

Parameters

• name (str) – The name of the pump to shut off

• rule (list) – Contains paramaters to define valve operation rule rule = [tc,ts,se,m] tc :
the duration takes to close the valve [s] ts : closure start time [s] se : final open percentage
[s] m : closure constant [unitless]

add_demand_pulse(name, rule)
Add demand pulse to junction

Parameters

• name (str or list) –

The name of junctions to add demand pulse rule : list

Contains paramters to define valve operation rule

• = [tc,ts,stay,dp,m] (rule) – tc : total duration of the pulse [s] [s] ts : start time
of demand [s] stay: duration of the demand to stay at peak level [s] dp : demand pulse
multiplier [uniteless]

add_surge_tank(name, shape, tank_type=’open’)
Add surge tank

Parameters

• name (str) – the name of the node to add a surge tank

• shape (list) –

if closed: [As, Ht, Hs] As : cross-sectional area of the surge tank Ht : tank height Hs :
initial water height in the surge tank

if open: [As]

• tank_type (int) – type of the surge tank, “closed” or “open”, by default ‘open’

detect_pressure_change(name, threshold, drift, show=False, ax=None)
Detect pressure change in simulation results

Parameters

• name (str) – The name of the node

• threshold (positive number, optional (default = 1)) – amplitude
threshold for the change in the data.

• drift (positive number, optional (default = 0)) – drift term that pre-
vents any change in the absence of change.

• show (bool, optional (default = True)) – True (1) plots data in matplotlib
figure, False (0) don’t plot.

• ax (a matplotlib.axes.Axes instance, optional (default =
None)) –

58 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

plot_node_head(name, ax=None)
Detect pressure change in simulation results

Parameters

• name (str or list) – The name of node

• ax (a matplotlib.axes.Axes instance, optional (default =
None)) –

tsnet.network.topology module

The tsnet.network.topology figure out the topology, i.e., upstream and downstream adjacent links for each pipe, and
store the information in lists.

tsnet.network.topology.topology(wn)
Figure out the topology of the network

Parameters

• wn (wntr.network.model.WaterNetworkModel) – .inp file used for EPAnet sim-
ulation

• npipe (integer) – Number of pipes

Returns

• links1 (list) – The id of adjacent pipe on the start node. The sign represents the direction of
the pipe. + : flowing into the junction - : flowing out from the junction

• links2 (list) – The id of adjacent pipe on the end node. The sign represents the direction of
the pipe. + : flowing into the junction - : flowing out from the junction

• utype (list) – The type of the upstream adjacent links. If the link is not pipe, the name of
that link will also be included. If there is no upstream link, the type of the start node will be
recorded.

• dtype (list) – The type of the downstream adjacent links. If the link is not pipe, the name of
that link will also be included. If there is no downstream link, the type of the end node will
be recorded.

Module contents

The tsnet.network package contains methods to define 1. a water network geometry, 2. network topology, 3. network
control, and 4 .spatial and temporal discretization.

12.1.2 tsnet.postprocessing package

Submodules

tsnet.postprocessing.time_history module

The tsnet.postprocessing.time_history module contains functions to plot the time history of head and velocity at the
start and end point of a pipe

tsnet.postprocessing.time_history.plot_head_history(pipe, H, wn, tt)
Plot Head history on the start and end node of a pipe

12.1. Subpackages 59

TSNet Documentation, Release 0.2.2

Parameters

• pipe (str) – Name of the pipe where you want to report the head

• H (list) – Head results

• wn (wntr.network.model.WaterNetworkModel) – Network

• tt (list) – Simulation timestamps

tsnet.postprocessing.time_history.plot_velocity_history(pipe, V, wn, tt)
Plot Velocity history on the start and end node of a pipe

Parameters

• pipe (str) – Name of the pipe where you want to report the head

• V (list) – velocity results

• wn (wntr.network.model.WaterNetworkModel) – Network

• tt (list) – Simulation timestamps

Module contents

The tsnet.postprocessing package contains functions to postprocess the simulation results.

12.1.3 tsnet.simulation package

Submodules

tsnet.simulation.initialize module

The tsnet.simulation.initialize contains functions to 1. Initialize the list containing numpy arrays for velocity and
head. 2. Calculate initial conditions using Epanet engine. 3. Calculate D-W coefficients based on initial conditions.
4. Calculate demand coefficients based on initial conditions.

tsnet.simulation.initialize.Initializer(tm, t0, engine=’DD’)
Initial Condition Calculation.

Initialize the list containing numpy arrays for velocity and head. Calculate initial conditions using Epanet
engine. Calculate D-W coefficients based on initial conditions. Calculate demand coefficients based on initial
conditions.

Parameters

• tm (tsnet.network.geometry.TransientModel) – Simulated network

• t0 (float) – time to calculate initial condition

• engine (string) – steady state calculation engine: DD: demand driven; PDD: pressure
dependent demand, by default DD

Returns tm – Network with updated parameters

Return type tsnet.network.geometry.TransientModel

tsnet.simulation.initialize.cal_demand_coef(demand, pipe, Hs, He, t0=0.0)
Calculate the demand coefficient for the start and end node of the pipe.

Parameters

• demand (list) – Demand at the start (demand[0]) and end demand[1] node

60 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

• pipe (object) – Pipe object

• Hs (float) – Head at the start node

• He (float) – Head at the end node

• t0 (float, optional) – Time to start initial condition calculation, by default 0

Returns pipe – Pipe object with calculated demand coefficient

Return type object

tsnet.simulation.initialize.cal_roughness_coef(pipe, V, hl)
Calculate the D-W roughness coefficient based on initial conditions.

Parameters

• pipe (object) – Pipe object

• V (float) – Initial flow velocity in the pipe

• hl (float) – Initial head loss in the pipe

Returns pipe – Pipe object with calculated D-W roughness coefficient.

Return type object

tsnet.simulation.initialize.pump_operation_points(tm)

tsnet.simulation.main module

The tsnet.simulation.main module contains function to perform the workflow of read, discretize, initial, and transient
simulation for the given .inp file.

tsnet.simulation.main.MOCSimulator(tm, results_obj=’results’, friction=’steady’)
MOC Main Function

Parameters

• tm (tsnet.network.model.TransientModel) – Network

• results_obj (string, optional) – the name of the results file, by default ‘results’

• friction (string, optional) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘un-
steady’, by default ‘steady’

Returns tm – Simulated network

Return type tsnet.network.model.TransientModel

tsnet.simulation.single module

The tsnet.simulation.single contains methods to perform MOC transient simulation on a single pipe, including 1. inner
pipe 2. left boundary pipe (without C- charateristic grid) 3. right boundary pipe (without C+ characteristic grid)

tsnet.simulation.single.inner_pipe(linkp, pn, dt, links1, links2, utype, dtype, p, H0, V0, H, V,
H10, V10, H20, V20, pump, valve, friction, dVdt, dVdx,
dVdt10, dVdx10, dVdt20, dVdx20)

MOC solution for an individual inner pipe.

Parameters

• linkp (object) – Current pipe object

• pn (int) – Current pipe ID

12.1. Subpackages 61

TSNet Documentation, Release 0.2.2

• dt (float) – Time step

• H (numpy.ndarray) – Head of current pipe at current time step [m]

• V (numpy.ndarray) – Velocity of current pipe at current time step [m/s]

• links1 (list) – Upstream adjacent pipes

• links2 (list) – Downstream adjacent pipes

• utype (list) – Upstream adjacent link type, and if not pipe, their name

• dtype (list) – Downstream adjacent link type, and if not pipe, their name

• p (list) – pipe list

• H0 (numpy.ndarray) – Head of current pipe at previous time step [m]

• V0 (numpy.ndarray) – Velocity of current pipe at previous time step [m/s]

• H10 (list) – Head of left adjacent nodes at previous time step [m]

• V10 (list) – Velocity of left adjacent nodes at previous time step [m/s]

• H20 (list) – Head of right adjacent nodes at previous time step [m]

• V20 (list) – Velocity of right adjacent nodes at previous time step [m/s]

• pump (list) – Characteristics of the pump

• valve (list) – Characteristics of the valve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdt (numpy.ndarray) – local instantaneous acceleration approximation to be used for
unsteady friction calculation, 0 if not in unsteady friction mode [m/s^2]

• dVdx (numpy.ndarray) – convective instantaneous acceleration approximation to be
used for unsteady friction calculation, 0 if not in unsteady friction mode [m/s^2]

• dVdt10 (list) – local instantaneous acceleration of left adjacent nodes at previous time
step [m]

• dVdx10 (list) – convective instantaneous acceleration of left adjacent nodes at previous
time step [m/s]

• dVdt20 (list) – local instantaneous acceleration of right adjacent nodes at previous time
step [m]

• dVdx20 (list) – convective instantaneous acceleration of right adjacent nodes at previous
time step [m/s]

Returns

• H (numpy.ndarray) – Head results of the current pipe at current time step. [m]

• V (numpy.ndarray) – Velocity results of the current pipe at current time step. [m/s]

tsnet.simulation.single.left_boundary(linkp, pn, H, V, H0, V0, links2, p, pump, valve, dt,
H20, V20, utype, dtype, friction, dVdt, dVdx, dVdt20,
dVdx20)

MOC solution for an individual left boundary pipe.

Parameters

• linkp (object) – Current pipe object

• pn (int) – Current pipe ID

62 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

• H (numpy.ndarray) – Head of current pipe at current time step [m]

• V (numpy.ndarray) – Velocity of current pipe at current time step [m/s]

• links2 (list) – Downstream adjacent pipes

• p (list) – pipe list

• pump (list) – Characteristics of the pump

• valve (list) – Characteristics of the valve

• n (int) – Number of discretization of current pipe

• dt (float) – Time step

• H0 (numpy.ndarray) – Head of current pipe at previous time step [m]

• V0 (numpy.ndarray) – Velocity of current pipe at previous time step [m/s]

• H20 (list) – Head of right adjacent nodes at previous time step [m]

• V20 (list) – Velocity of right adjacent nodes at previous time step [m/s]

• utype (list) – Upstream adjacent link type, and if not pipe, their name

• dtype (list) – Downstream adjacent link type, and if not pipe, their name

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdt (numpy.ndarray) – local instantaneous velocity approximation to be used for
unsteady friction calculation, 0 if not in unsteady friction mode [m/s^2]

• dVdx (numpy.ndarray) – convective instantaneous velocity approximation to be used
for unsteady friction calculation, 0 if not in unsteady friction mode [m/s^2]

• dVdt20 (list) – local instantaneous acceleration of right adjacent nodes at previous time
step [m]

• dVdx20 (list) – convective instantaneous acceleration of right adjacent nodes at previous
time step [m/s]

Returns

• H (numpy.ndarray) – Head results of the current pipe at current time step. [m]

• V (numpy.ndarray) – Velocity results of the current pipe at current time step. [m/s]

tsnet.simulation.single.right_boundary(linkp, pn, H0, V0, H, V, links1, p, pump, valve, dt,
H10, V10, utype, dtype, friction, dVdt, dVdx, dVdt10,
dVdx10)

MOC solution for an individual right boundary pipe.

linkp [object] Current pipe object

pn [int] Current pipe ID

H [numpy.ndarray] Head of current pipe at current time step [m]

V [numpy.ndarray] Velocity of current pipe at current time step [m/s]

links1 [list] Upstream adjacent pipes

p [list] pipe list

pump [list] Characteristics of the pump

valve [list] Characteristics of the valve

12.1. Subpackages 63

TSNet Documentation, Release 0.2.2

n [int] Number of discretization of current pipe

dt [float] Time step

H0 [numpy.ndarray] Head of current pipe at previous time step [m]

V0 [numpy.ndarray] Velocity of current pipe at previous time step [m/s]

H10 [list] Head of left adjacent nodes at previous time step [m]

V10 [list] Velocity of left adjacent nodes at previous time step [m/s]

utype [list] Upstream adjacent link type, and if not pipe, their name

dtype [list] Downstream adjacent link type, and if not pipe, their name

friction: str friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default ‘steady’

dVdt: numpy.ndarray local instantaneous velocity approximation to be used for unsteady friction
calculation, 0 if not in unsteady friction mode [m/s^2]

dVdx: numpy.ndarray convective instantaneous velocity approximation to be used for unsteady
friction calculation, 0 if not in unsteady friction mode [m/s^2]

dVdt10 [list] local instantaneous acceleration of left adjacent nodes at previous time step [m]

dVdx10 [list] convective instantaneous acceleration of left adjacent nodes at previous time step [m/s]

Returns

H [numpy.ndarray] Head results of the current pipe at current time step. [m]

V [numpy.ndarray] Velocity results of the current pipe at current time step. [m/s]

tsnet.simulation.solver module

The tsnet.simulation.solver module contains methods to solver MOC for different grid configurations, including: 1.
inner_node 2. valve_node 3. pump_node 4. source_pump 5. valve_end 6. dead_end 7. rev_end 8. add_leakage

tsnet.simulation.solver.Reynold(V, D)
Calculate Reynold number

Parameters

• V (float) – velocity

• D (float) – diameter

Returns Re – Reynold number

Return type float

tsnet.simulation.solver.quasi_steady_friction_factor(Re, KD)
Update friction factor based on Reynold number

Parameters

• Re (float) – velocity

• KD (float) – relative roughness height (K/D)

Returns f – quasi-steady friction factor

Return type float

tsnet.simulation.solver.unsteady_friction(Re, dVdt, dVdx, V, a, g)
Calculate unsteady friction

64 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

Parameters

• Re (float) – velocity

• dVdt (float) – local instantaneous acceleration

• dVdx (float) – instantaneous convective acceleration

• V (float) – velocity

• a (float) – wave speed

• g (float) – gravitational acceleration

Returns Ju – unsteady friction factor

Return type float

tsnet.simulation.solver.cal_friction(friction, f, D, V, KD, dt, dVdt, dVdx, a, g)
Calculate friction term

Parameters

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• f (float) – steady friction factor

• D (float) – pipe diameter

• V (float) – pipe flow velocity

• KD (float) – relative roughness height

• dt (float) – time step

• dVdt (float) – local instantaneous acceleration

• dVdx (float) – convective instantaneous acceleration

• a (float) – wave speed

• g (float) – gravitational accelerations

Returns total friction, including steady and unsteady

Return type float

tsnet.simulation.solver.cal_Cs(link1, link2, H1, V1, H2, V2, s1, s2, g, dt, friction, dVdx1, dVdx2,
dVdt1, dVdt2)

Calculate coefficients for MOC characteristic lines

Parameters

• link1 (object) – Pipe object of C+ charateristics curve

• link2 (object) – Pipe object of C- charateristics curve

• H1 (list) – List of the head of C+ charateristics curve

• V1 (list) – List of the velocity of C+ charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• s1 (list) – List of signs that represent the direction of the flow in C+ charateristics curve

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• dt (float) – Time step

12.1. Subpackages 65

TSNet Documentation, Release 0.2.2

• g (float) – Gravity acceleration

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

Returns

• A1 (list) – list of left adjacent pipe cross-section area

• A2 (list) – list of right adjacent pipe cross-section area

• C1 (list) – list of left adjacent pipe MOC coefficients

• C2 (list) – list of right adjacent pipe MOC coefficients

tsnet.simulation.solver.inner_node_unsteady(link, H0, V0, dt, g, dVdx, dVdt)
Inner boundary MOC using C+ and C- characteristic curve with unsteady friction

Parameters

• link (object) – current pipe

• H0 (list) – head at previous time step

• V0 (list) – velocity at previous time step

• dt (float) – Time step

• g (float) – Gravity acceleration

• dVdx (list) – List of convective instantaneous acceleration

• dVdt (list) – List of local instantaneous acceleration

Returns

• HP (float) – Head at current pipe inner nodes at current time

• VP (float) – Velocity at current pipe inner nodes at current time

tsnet.simulation.solver.inner_node_quasisteady(link, H0, V0, dt, g)
Inner boundary MOC using C+ and C- characteristic curve with unsteady friction

Parameters

• link (object) – current pipe

• H0 (list) – head at previous time step

• V0 (list) – velocity at previous time step

• dt (float) – Time step

• g (float) – Gravity acceleration

• dVdx (list) – List of convective instantaneous acceleration

• dVdt (list) – List of local instantaneous acceleration

Returns

66 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

• HP (float) – Head at current pipe inner nodes at current time

• VP (float) – Velocity at current pipe inner nodes at current time

tsnet.simulation.solver.inner_node_steady(link, H0, V0, dt, g)
Inner boundary MOC using C+ and C- characteristic curve with unsteady friction

Parameters

• link (object) – current pipe

• H0 (list) – head at previous time step

• V0 (list) – velocity at previous time step

• dt (float) – Time step

• g (float) – Gravity acceleration

Returns

• HP (float) – Head at current pipe inner nodes at current time

• VP (float) – Velocity at current pipe inner nodes at current time

tsnet.simulation.solver.valve_node(KL_inv, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, fric-
tion, dVdx1, dVdx2, dVdt1, dVdt2)

Inline valve node MOC calculation

Parameters

• KL_inv (int) – Inverse of the valve loss coefficient at current time

• link1 (object) – Pipe object of C+ charateristics curve

• link2 (object) – Pipe object of C- charateristics curve

• H1 (list) – List of the head of C+ charateristics curve

• V1 (list) – List of the velocity of C+ charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• dt (float) – Time step

• g (float) – Gravity acceleration

• nn (int) – The index of the calculation node

• s1 (list) – List of signs that represent the direction of the flow in C+ charateristics curve

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

12.1. Subpackages 67

TSNet Documentation, Release 0.2.2

tsnet.simulation.solver.pump_node(pumpc, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, friction,
dVdx1, dVdx2, dVdt1, dVdt2)

Inline pump node MOC calculation

Parameters

• pumpc (list) – Parameters (a, b,c) to define pump characteristic cure, so that .. math::
h_p = a*Q**2 + b*Q + c

• link1 (object) – Pipe object of C+ charateristics curve

• link2 (object) – Pipe object of C- charateristics curve

• H1 (list) – List of the head of C+ charateristics curve

• V1 (list) – List of the velocity of C+ charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• dt (float) – Time step

• g (float) – Gravity acceleration

• nn (int) – The index of the calculation node

• s1 (list) – List of signs that represent the direction of the flow in C+ charateristics curve

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

tsnet.simulation.solver.source_pump(pump, link2, H2, V2, dt, g, s2, friction, dVdx2, dVdt2)
Source Pump boundary MOC calculation

Parameters

• pump (list) – pump[0]: elevation of the reservoir/tank pump[1]: Parameters (a, b,c) to
define pump characteristic cure, so that .. math:: h_p = a*Q**2 + b*Q + c

• link2 (object) – Pipe object of C- charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• dt (float) – Time step

• g (float) – Gravity acceleration

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

68 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

tsnet.simulation.solver.valve_end(H1, V1, V, nn, a, g, f, D, dt, KD, friction, dVdx2, dVdt2)
End Valve boundary MOC calculation

Parameters

• H1 (float) – Head of the C+ charateristics curve

• V1 (float) – Velocity of the C+ charateristics curve

• V (float) – Velocity at the valve end at current time

• nn (int) – The index of the calculation node

• a (float) – Wave speed at the valve end

• g (float) – Gravity acceleration

• f (float) – friction factor of the current pipe

• D (float) – diameter of the current pipe

• dt (float) – Time step

• KD (float) – relative roughness height

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

tsnet.simulation.solver.dead_end(linkp, H1, V1, elev, nn, a, g, f, D, dt, KD, friction, dVdx1,
dVdt1)

Dead end boundary MOC calculation with pressure dependant demand

Parameters

• linkp (object) – Current pipe

• H1 (float) – Head of the C+ charateristics curve

• V1 (float) – Velocity of the C+ charateristics curve

• elev (float) – Elevation at the dead end node

• nn (int) – The index of the calculation node

• a (float) – Wave speed at the valve end

• g (float) – Gravity acceleration

• f (float) – friction factor of the current pipe

• D (float) – diameter of the current pipe

• dt (float) – Time step

• KD (float) – relative roughness height

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

12.1. Subpackages 69

TSNet Documentation, Release 0.2.2

tsnet.simulation.solver.rev_end(H2, V2, H, nn, a, g, f, D, dt, KD, friction, dVdx2, dVdt2)
Reservoir/ Tank boundary MOC calculation

Parameters

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• H (float) – Head of the reservoir/tank

• nn (int) – The index of the calculation node

• a (float) – Wave speed at the valve end

• g (float) – Gravity acceleration

• f (float) – friction factor of the current pipe

• D (float) – diameter of the current pipe

• dt (float) – Time step

• KD (float) – relative roughness height

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

tsnet.simulation.solver.add_leakage(emitter_coef, block_per, link1, link2, elev, H1, V1, H2,
V2, dt, g, nn, s1, s2, friction, dVdx1=0, dVdx2=0,
dVdt1=0, dVdt2=0)

Leakage Node MOC calculation

Parameters

• emitter_coef (float) – float, optional Required if leak_loc is defined The leakage
coefficient of the leakage .. math:: Q_leak = leak_A [m^3/s/(m H20)^(1/2)] * sqrt(H)

• link1 (object) – Pipe object of C+ charateristics curve

• link2 (object) – Pipe object of C- charateristics curve

• H1 (list) – List of the head of C+ charateristics curve

• V1 (list) – List of the velocity of C+ charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• dt (float) – Time step

• g (float) – Gravity acceleration

• nn (int) – The index of the calculation node

• s1 (list) – List of signs that represent the direction of the flow in C+ charateristics curve

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

70 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

tsnet.simulation.solver.surge_tank(tank, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, friction,
dVdx1, dVdx2, dVdt1, dVdt2)

Surge tank node MOC calculation

Parameters

• tank (int) – tank shape parameters [As, z, Qs]

As : cross-sectional area of the surge tank z : water level in the surge tank at previous
time step Qs : water flow into the tank at last time step

• link1 (object) – Pipe object of C+ charateristics curve

• link2 (object) – Pipe object of C- charateristics curve

• H1 (list) – List of the head of C+ charateristics curve

• V1 (list) – List of the velocity of C+ charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• dt (float) – Time step

• g (float) – Gravity acceleration

• nn (int) – The index of the calculation node

• s1 (list) – List of signs that represent the direction of the flow in C+ charateristics curve

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

tsnet.simulation.solver.air_chamber(tank, link1, link2, H1, V1, H2, V2, dt, g, nn, s1, s2, fric-
tion, dVdx1, dVdx2, dVdt1, dVdt2)

Surge tank node MOC calculation

Parameters

• tank (int) – tank shape parameters [As, ht, C, z, Qs]

As : cross-sectional area of the surge tank ht : tank height C : air constant z : water
level in the surge tank at previous time step Qs : water flow into the tank at last time
step

12.1. Subpackages 71

TSNet Documentation, Release 0.2.2

• link1 (object) – Pipe object of C+ charateristics curve

• link2 (object) – Pipe object of C- charateristics curve

• H1 (list) – List of the head of C+ charateristics curve

• V1 (list) – List of the velocity of C+ charateristics curve

• H2 (list) – List of the head of C- charateristics curve

• V2 (list) – List of the velocity of C- charateristics curve

• dt (float) – Time step

• g (float) – Gravity acceleration

• nn (int) – The index of the calculation node

• s1 (list) – List of signs that represent the direction of the flow in C+ charateristics curve

• s2 (list) – List of signs that represent the direction of the flow in C- charateristics curve

• friction (str) – friction model, e.g., ‘steady’, ‘quasi-steady’, ‘unsteady’, by default
‘steady’

• dVdx1 (list) – List of convective instantaneous acceleration on the C+ characteristic
curve

• dVdx2 (list) – List of convective instantaneous acceleration on the C- characteristic
curve

• dVdt1 (list) – List of local instantaneous acceleration on the C+ characteristic curve

• dVdt2 (list) – List of local instantaneous acceleration on the C- characteristic curve

Module contents

The tsnet.simulation package contains methods to run transient simulation using MOC method

12.1.4 tsnet.utils package

Submodules

tsnet.utils.calc_parabola_vertex module

The tsnet.utils.calc_parabola_vertex contains function to calculate the parameters of a parabola based on the coordi-
nated of three points on the curve.

tsnet.utils.calc_parabola_vertex.calc_parabola_vertex(points)
Adapted and modifed to get the unknowns for defining a parabola

Parameters points (list) – Three points on the pump characteristics curve.

tsnet.utils.memo module

tsnet.utils.memo.decorator(d)
Make function d a decorator: d wraps a function fn.

tsnet.utils.memo.memo(f)
Decorator that caches the return value for each call to f(args). Then when called again with same args, we can
just look it up.

72 Chapter 12. tsnet package

TSNet Documentation, Release 0.2.2

tsnet.utils.print_time_delta module

tsnet.utils.print_time_delta.print_time_delta(seconds)

tsnet.utils.valve_curve module

The tsnet.utils.valve_curve contains function to define valve characteristics curve, gate valve by default.

tsnet.utils.valve_curve.valve_curve(s, coeff=None)
Define valve curve

Parameters

• s (float) – open percentage

• valve (str, optional) – [description], by default ‘Gate’

Returns k – Friction coefficient with given open percentage

Return type float

Module contents

The tsnet.utils package contains helper functions.

12.2 Module contents

Top-level package for tsnet.

12.2. Module contents 73

TSNet Documentation, Release 0.2.2

74 Chapter 12. tsnet package

CHAPTER 13

Abbreviations

API: Application programming interface

EPA: Environmental Protection Agency

IDE: Integrated development environment

SI: International System of Units

US: United States

MOC: Method of Characteristics

TSNET: Transient Simulation in water Networks

75

TSNet Documentation, Release 0.2.2

76 Chapter 13. Abbreviations

CHAPTER 14

Reference

77

TSNet Documentation, Release 0.2.2

78 Chapter 14. Reference

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

79

TSNet Documentation, Release 0.2.2

80 Chapter 15. Indices and tables

Bibliography

[WYSS93] Wylie, E. B., Streeter, V. L., & Suo, L. (1993). Fluid transients in systems (Vol. 1, p. 464). Englewood
Cliffs, NJ: Prentice Hall.

[WNTRSi] Klise, K. A., Hart, D., Moriarty, D., Bynum, M. L., Murray, R., Burkhardt, J., & Haxton, T. (2017). Water
network tool for resilience (WNTR) user manual. US Environmental Protection Agency, EPA/600/R-
17/264, Cincinnati, OH.

[LAJW99] Larock, B. E., Jeppson, R. W., & Watters, G. Z. (1999). Hydraulics of pipeline systems. CRC press.

[STWV96] Street, R. L., Watters, G. Z., & Vennard, J. K. (1996). Elementary fluid mechanics. J. Wiley.

[WOLB05] Wood, D. J., Lingireddy, S., Boulos, P. F., Karney, B. W., & McPherson, D. L. (2005). Numerical methods
for modeling transient flow in distribution systems. Journal-American Water Works Association, 97(7),
104-115.

[RERS15] Rezaei, H., Ryan, B., & Stoianov, I. (2015). Pipe failure analysis and impact of dynamic hydraulic condi-
tions in water supply networks. Procedia Engineering, 119, 253-262.

[ASCE17] ASCE. (2017). 2017 infrastructure report card. Reston, VA: ASCE.

[VaCV11] van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The NumPy array: A structure for efficient
numerical computation. Computing in Science and Engineering, 13, 22-30.

[HaSS08] Hagberg, A.A., Schult, D.A., and Swart P.J. (2008). Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), August 19-24,
Pasadena, CA, USA.

[Hunt07] Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and Engineering,
9(3), 90-95.

[MISI08] Misiūnas, D. (2008). Failure monitoring and asset condition assessment in water supply systems. Vilnius
Gediminas Technical University.

[STWY67] Streeter, V. L., & Wylie, E. B. (1967). Hydraulic transients (No. BOOK). mcgraw-hill.

[OSBH08] Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., . . . & di Pierro, F. (2008).
The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. Journal
of Water Resources Planning and Management, 134(6), 556-568.

[VIBS06] Vítkovský, J. P., Bergant, A., Simpson, A. R., & Lambert, M. F. (2006). Systematic evaluation of one-
dimensional unsteady friction models in simple pipelines. Journal of Hydraulic Engineering, 132(7), 696-
708.

81

TSNet Documentation, Release 0.2.2

[VABR95] Vardy, A. E., & Brown, J. M. (1995). Transient, turbulent, smooth pipe friction. Journal of hydraulic
research, 33(4), 435-456.

[HAMMER] Bentley, W. H. Transient Analysis Software.

82 Bibliography

Python Module Index

t
tsnet, 73
tsnet.network, 59
tsnet.network.control, 53
tsnet.network.discretize, 55
tsnet.network.model, 56
tsnet.network.topology, 59
tsnet.postprocessing, 60
tsnet.postprocessing.time_history, 59
tsnet.simulation, 72
tsnet.simulation.initialize, 60
tsnet.simulation.main, 61
tsnet.simulation.single, 61
tsnet.simulation.solver, 64
tsnet.utils, 73
tsnet.utils.calc_parabola_vertex, 72
tsnet.utils.memo, 72
tsnet.utils.print_time_delta, 73
tsnet.utils.valve_curve, 73

83

TSNet Documentation, Release 0.2.2

84 Python Module Index

Index

A
add_blockage() (tsnet.network.model.TransientModel

method), 57
add_burst() (tsnet.network.model.TransientModel

method), 57
add_demand_pulse()

(tsnet.network.model.TransientModel method),
58

add_leak() (tsnet.network.model.TransientModel
method), 56

add_leakage() (in module tsnet.simulation.solver),
70

add_surge_tank() (tsnet.network.model.TransientModel
method), 58

adjust_wavev() (in module
tsnet.network.discretize), 55

air_chamber() (in module tsnet.simulation.solver),
71

B
burstsetting() (in module tsnet.network.control),

54

C
cal_Cs() (in module tsnet.simulation.solver), 65
cal_demand_coef() (in module

tsnet.simulation.initialize), 60
cal_friction() (in module tsnet.simulation.solver),

65
cal_N() (in module tsnet.network.discretize), 55
cal_roughness_coef() (in module

tsnet.simulation.initialize), 61
calc_parabola_vertex() (in module

tsnet.utils.calc_parabola_vertex), 72

D
dead_end() (in module tsnet.simulation.solver), 69
decorator() (in module tsnet.utils.memo), 72
demandpulse() (in module tsnet.network.control), 54

detect_pressure_change()
(tsnet.network.model.TransientModel method),
58

discretization() (in module
tsnet.network.discretize), 55

discretization_N() (in module
tsnet.network.discretize), 55

I
Initializer() (in module

tsnet.simulation.initialize), 60
inner_node_quasisteady() (in module

tsnet.simulation.solver), 66
inner_node_steady() (in module

tsnet.simulation.solver), 67
inner_node_unsteady() (in module

tsnet.simulation.solver), 66
inner_pipe() (in module tsnet.simulation.single), 61

L
left_boundary() (in module

tsnet.simulation.single), 62

M
max_time_step() (in module

tsnet.network.discretize), 55
max_time_step_N() (in module

tsnet.network.discretize), 55
memo() (in module tsnet.utils.memo), 72
MOCSimulator() (in module tsnet.simulation.main),

61

P
plot_head_history() (in module

tsnet.postprocessing.time_history), 59
plot_node_head() (tsnet.network.model.TransientModel

method), 58
plot_velocity_history() (in module

tsnet.postprocessing.time_history), 60

85

TSNet Documentation, Release 0.2.2

print_time_delta() (in module
tsnet.utils.print_time_delta), 73

pump_node() (in module tsnet.simulation.solver), 67
pump_operation_points() (in module

tsnet.simulation.initialize), 61
pump_shut_off() (tsnet.network.model.TransientModel

method), 57
pump_start_up() (tsnet.network.model.TransientModel

method), 58
pumpclosing() (in module tsnet.network.control), 54
pumpopening() (in module tsnet.network.control), 54

Q
quasi_steady_friction_factor() (in module

tsnet.simulation.solver), 64

R
rev_end() (in module tsnet.simulation.solver), 70
Reynold() (in module tsnet.simulation.solver), 64
right_boundary() (in module

tsnet.simulation.single), 63

S
set_roughness() (tsnet.network.model.TransientModel

method), 56
set_time() (tsnet.network.model.TransientModel

method), 56
set_time_N() (tsnet.network.model.TransientModel

method), 56
set_wavespeed() (tsnet.network.model.TransientModel

method), 56
source_pump() (in module tsnet.simulation.solver),

68
surge_tank() (in module tsnet.simulation.solver), 71

T
topology() (in module tsnet.network.topology), 59
TransientModel (class in tsnet.network.model), 56
tsnet (module), 73
tsnet.network (module), 59
tsnet.network.control (module), 53
tsnet.network.discretize (module), 55
tsnet.network.model (module), 56
tsnet.network.topology (module), 59
tsnet.postprocessing (module), 60
tsnet.postprocessing.time_history (mod-

ule), 59
tsnet.simulation (module), 72
tsnet.simulation.initialize (module), 60
tsnet.simulation.main (module), 61
tsnet.simulation.single (module), 61
tsnet.simulation.solver (module), 64
tsnet.utils (module), 73

tsnet.utils.calc_parabola_vertex (mod-
ule), 72

tsnet.utils.memo (module), 72
tsnet.utils.print_time_delta (module), 73
tsnet.utils.valve_curve (module), 73

U
unsteady_friction() (in module

tsnet.simulation.solver), 64

V
valve_closure() (tsnet.network.model.TransientModel

method), 57
valve_curve() (in module tsnet.utils.valve_curve),

73
valve_end() (in module tsnet.simulation.solver), 69
valve_node() (in module tsnet.simulation.solver), 67
valve_opening() (tsnet.network.model.TransientModel

method), 57
valveclosing() (in module tsnet.network.control),

53
valveopening() (in module tsnet.network.control),

53

86 Index

	Introduction to TSNet
	Overview
	Features
	Version
	Contact
	Disclaimer
	Cite TSNet
	License

	Installation
	Setup Python Environment
	Stable Release (for users)
	From Sources (for developers)
	Dependencies

	Software Conventions and Limitations
	Units
	Modelling Assumptions and Limitations

	Getting Started
	Simple example

	Transient Modeling Framework
	Transient Model
	Initial Conditions
	Transient Simulation

	Simulation Results
	Results Structure
	Time Step and Time Stamps
	Results Retrieval
	Runtime and Progress

	Example Applications
	Example 1 - End-valve closure
	Example 2 - Pump operations
	Example 3 - Burst and leak

	Comparison with Hammer
	Tnet 0
	Tnet 3

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2019-08-15)
	0.1.1 (2019-09-21)
	0.1.2 (2020-01-20)
	0.2.0 (2020-4-23)
	0.2.1 (2020-09-09)
	0.2.2 (2020-09-24)
	0.2.3 (2021-11-12)
	0.2.4 (2022-06-17)
	0.3.0 (2023-02-22)

	tsnet package
	Subpackages
	Module contents

	Abbreviations
	Reference
	Indices and tables
	Bibliography
	Python Module Index
	Index

